img

Wechat

Adv. Search

Gold Science and Technology ›› 2015, Vol. 23 ›› Issue (3): 93-98.doi: 10.11872/j.issn.1005-2518.2015.03.0093

Previous Articles     Next Articles

The Application of Ultrasound Technology in Gold Smelting and Processing

CUI Wei1,2,3,WANG Shixing1,2,3,PENG Jinhui1,2,3,ZHANG Libo1,2,3,ZHANG Gengwei1,2,3   

  1. 1.Faculty of Metallurgy and Entrgy Engineering,Kunming University of Science and Technology,Kunming   650093,Yunnan,China;
    2.Key Laboratory of Unconventional Metallurgy Ministry of Education Kunming University of Science and Technology,Kunming   650093,Yunnan,China;
    3.Yunnan Engineering Laboratory of Microwave Energy Application and Equipment Technology, Kunming University of Science and Technology,Kunming   650093,Yunnan,China
  • Received:2015-01-15 Revised:2015-04-02 Online:2015-06-28 Published:2015-11-16

Abstract:

Because gold has the features of high corrosion resistance,good electrical conductivity and thermal conductivity,thus those features have been widely used in industry.Due to the existing gold smelting and processing technology had characteristics of long cycle,low efficiency,big reagent consumption,high energy consuming and operation process complex faults,therefore,in recent years,ultrasonic technology has already been applied extensively in various fields,developed well,and achieved good results.In this paper,we summarized and analyzed the application of ultrasonic technology in gold leaching,nanometer materials preparation,chemical plating and gold testing.The results demonstrated that compared with the application of traditional technology in the fields mentioned above,the ultrasonic technology presented the features of high efficiency,low energy consumption,wide application and ease of automation control,etc.With the development of the research on the basic theory of ultrasonic and continuous improvement of ultrasonic equipment,ultrasound technology will be favored and widely employed for the refractory gold ore,new material preparation as well as nondestructive testing,etc.

Key words: ultrasonic technology, gold leaching, gold smelting and processing, refractory gold ore

CLC Number: 

  • TF831

[1] Scaletti F,Kim C S,Messori L,et al.Rapid purification of gold nanorods for biomedical applications[J].MethodsX,2014,1:118-123. 
[2] 祁彩霞,安立敦,管仁贵.黄金材料的新兴工业应用[J].化学通报,2012,75(1):1-6.
[3] 李文彦,孙赛,郭兴忠,等.含竹炭黄金尾矿陶瓷砖制备研究[J].新型建筑材料,2011,38(6):21-24.
[4] 孙浩.羟基磷灰石基高效多相纳米金催化材料的构筑及其在绿色选择氧化反应中的应用[D].上海:复旦大学,2010.
[5] 陈东,梁殿印,韩登峰,等.超声波对常用浮选药剂分散乳化效果研究[J].有色金属:选矿部分,2011,(3):50-53.
[6] 朱军,刘苏宁.难处理金矿浸出技术的现状与研究[J].矿业工程,2010,8(1):35-37.
[7] 森松(江苏)海油工程装备有限公司.一种难处理金矿预处理方法:中国,CN102560138A [P].2012.
[8] 蔡婷婷.超声波辅助不同重金属浸出和沉降过程及机理的研究 [D].广州:华南理工大学,2010.
[9] Wang X,Srinivasakannan Duan X H,et al.Leaching kinetics of zinc residues augmented with ultrasound[J].Separation and Purification Technology,2013,115:66-72.
[10] 罗曾义,邓文海,刘正元,等.D6超声强化氰化法浸出黄金的研究[J].声学技术,1996,15(4):l98-200.
[11] 赵文焕.超声波强化浸出(PUL法)银精矿中金银的研究[J].矿冶,1995,4(3):60-66.
[12] 赵文焕.超声波强化浸出(PUL法)金生产应用可行性研究[J].矿冶,1996,5(4):51-54.
[13] 念保义,郑炳云.超声波强化硫脲提金的研究[J].福建化工,2001,(2):21-22,43.
[14] 张卿.某含砷难处理金矿超声强化浸金试验研究[J].矿产综合利用,2010,(4):12-15.
[15] 王仕兴,彭金辉,张立波,等.超声波强化氰化法浸金的 研究[J].贵金属,2014,(增):19-22.
[16] Li L,Zhai L Y,Zhang X X,et al.Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process[J].Journal of Power Sources,2014,262:380-385.
[17] Sreeprasad T S,Pradeep T.Noble metalnanoparticles[M]//Springer Handbook of Nanomaterials. Berlin:Springer,2013:303-388.
[18] Lee J H,Choi S U S,Jang S P,et al.Production of aqueous spherical gold nanoparticles using conventional ultrasonic bath[J].Nanoscale Research Letters,2012,7(1):1-7.
[19] 王斌,徐守霞.超声法金纳米粒子的制备及结构表征[J].化学工程与装备,2010,(12):61-63.
[20] Park J E,Atobe M,Fuchigami T.Synthesis of multiple shapes of gold nanoparticles with controlled sizes in aqueous solution using ultrasound[J].Ultrasonics Sonochemistry,2006,13(3):237-241.
[21] 王平军.金纳米粒子在功能化离子液体和功能化有序介孔材料中的制备[D].长沙:湖南师范大学,2007.
[22] He C D,Liu L L,Fang Z G,et al.Formation and characterization of silver nanoparticles in aqueous solution via ultrasonic irradiation[J].Ultrasonics Sonochemistry,2014,21(2):542-548.
[23] 中山职业技术学院.一种超声波电镀铝合金的方法:中国,CN201310139526.3 [P].2013.
[24] Ohsaka T,Isaka M,Hirano K,et al.Effect of ultrasound sonication on electroplating of iridium[J].Ultrasonics Sonochemistry,2008,15(4):283-288.
[25] Tudela I,Zhang Y,Pal M,et al.Ultrasound-assisted electro-deposition of composite coatings with particles[J].Surface and Coatings Technology,2014,259:363-373.
[26] Lorimer J P,Pollet B,Phull S S,et al.The effect of ultrasonic frequency and intensity upon limiting currents at rotating disc and stationary electrodes[J].Electrochimica Acta,1996,41(17):2737-2741.
[27] 江洪涛,刘彬.微型继电器接触簧片镀金工艺研究[J].电镀与涂饰,2005,24(10):15-16.
[28] 张勇强,卢长春.镀金用微型超声波发生器的研制和应用[J].机电元件,1994,(2):15-17.
[29] Cobley A J,Mason T J,Alarjah M,et al.The effect of ultrasoundon the gold plating of silica nanoparticles for use in composite solders[J].Ultrasonics Sonochemistry,2011,18(1):37-41.
[30] Bulat T J.Macrosonics in industry:3.Ultrasonic cleaning[J].Ultrasonics,1974,12(2):59-68.
[31] Ferrell G W,Crum L A.A novel cavitation probe design and some preliminary measurements of its application to megasonic cleaning[J].The Journal of the Acoustical Society of America,2002,112(3):1196-1201.
[32] Kim W J,Kim T H,Choi J,et al.Mechanism of particle removal by megasonic waves[J].Applied Physics Letters,2009,94(8):081908.
[33] Tudela I,Zhang Y,Pal M,et al.Ultrasound-assisted elec-trodeposition of nickel: Effect of ultrasonic power on the characteristicsof thin coatings[J].Surface and Coatings Technology,2015,264:49-59.
[34] Klochko N P,Khrypunov G S,Kopach V R,et al.Ultrasound assisted nickel plating and silicide contact formation for vertical multi-junction solar cells[J].Solar Energy,2013,98:384-391.
[35] Llona L D V,Jansen H V,Elwenspoek M C.Seedless electroplating on patterned silicon[J].Journal of Micromechanics and Microengineering,2006,16(6):1-6.
[36] Fazelirad H,Taher M A,Nasiri-Majd M.GFAAS determination of gold with ionic liquid,ion pair based and ultra-sound-assisted dispersive liquid-liquid microextraction[J].Journal of Analytical Atomic Spectrometry,2014,29(12):2343-2348.
[37] 钟德煌,徐贝尔,梁茂飞.超声波相控阵黄金纯度检测技术[J].无损检测,2013,35(3):16-18.
[38] 宋茂双,Yoneda A,Ito E.Kawai型多顶砧高压装置上0~8 GPa静水压力下单晶金的超声波弹性测量[J].科学通报,2007,52(5):507-512.

[1] SONG Yan, YANG Hongying, TONG Linlin, MA Pengcheng, JIN Zhenan.
Experimental Study on Bacterial Oxidation-Cyanidation of a Complex Re-fractory Gold Mine in Gansu Province
 
[J]. Gold Science and Technology, 2018, 26(2): 241-247.
[2] ZHAO Hefei,YANG Hongying,ZHANG Qin,TONG Linlin,JIN Zhenan,CHEN Guobao. Research Status of Factors Influence on Leaching of Gold with Thiosulfate [J]. Gold Science and Technology, 2018, 26(1): 105-114.
[3] DUAN Minjing,LIANG Changli,XU Baoquan,CHEN Lingkang. Selective Precipitation of Iron from Bio-oxidation Liquid of Gold Extraction [J]. Gold Science and Technology, 2017, 25(6): 121-126.
[4] DANG Xiao’e,WANG Lu,MENG Yusong,SONG Yonghui,Lü Chaofei. Performance of an Environmental Gold Leaching Agent and Activated Carbon Adsorption Characteristics of Gold in the Liquid [J]. Gold Science and Technology, 2017, 25(6): 114-120.
[5] SONG Yonghui,YAO Di,ZHANG Shan,TIAN Yuhong,LAN Xinzhe. Study on the Treatment of Cyanide Wastewater by Three-dimensional Electrode [J]. Gold Science and Technology, 2017, 25(5): 116-121.
[6] YANG Wei,WANG Gang,CAO Huan,ZHANG Kai. Effect of Roasting-Acid Leaching on Gold and Silver Leaching Rate of Gold Concentrate Containing Copper [J]. Gold Science and Technology, 2017, 25(5): 122-126.
[7] LIU Qian,YANG Hongying,TONG Linlin. Screening of High Correlation Variables of Elemental Carbon Degradation by Phanerochaete chrysosporium in Carbonaceous Gold Ores [J]. Gold Science and Technology, 2017, 25(5): 140-144.
[8] WANG Shuo. Experimental Study on Gold Leaching Process of a Gold Mine in Gansu Province [J]. Gold Science and Technology, 2017, 25(4): 122-127.
[9] DANG Xiao’e,MENG Yusong,WANG Lu,SONG Yonghui,LV Chaofei,YUN Yaxin. Application Status and Development Trend of Two New Gold Extraction Technologies [J]. Gold Science and Technology, 2017, 25(4): 113-121.
[10] ZHANG Yuxiu,GUO Degeng,LI Yuanyuan,ZHANG Guangji. Variation of Arsenic Valence and Its Effect on Bacteria During Biooxidation of Refractory Gold Concentrate Containing Arsenic [J]. Gold Science and Technology, 2017, 25(4): 106-112.
[11] SHENG Yong,LIU Tingyao,HAN Lihui,LIU Qing. Numerical Simulation of Solid-Liquid Mixing in Stirred Tank During Decyanation Process of Gold-Containing Wastewater [J]. Gold Science and Technology, 2016, 24(5): 108-114.
[12] XIAO Li,LV Cuicui,WANG Yongliang,YE Shufeng. [J]. Gold Science and Technology, 2016, 24(5): 115-120.
[13] WANG Yongliang,LV Cuicui,XIAO Li,DING Jian,FU Guoyan,YE Shufeng. [J]. Gold Science and Technology, 2016, 24(4): 144-148.
[14] ZHANG Junjie,WANG Shuai,ZHANG Tianqi,LI Chao,LI Hongxu. Study on the New Granulation Technology for Heap Leaching of Gold Ore [J]. Gold Science and Technology, 2016, 24(4): 149-153.
[15] LIU Jingui,ZHANG Shuying,LI Zhengjun. Study and Application of Gold Extraction Agent in a CIP Process [J]. Gold Science and Technology, 2016, 24(4): 164-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!