img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (4): 521-530.doi: 10.11872/j.issn.1005-2518.2020.04.016

• 采选技术与矿山管理 • 上一篇    下一篇

微波辐射辅助机械冲击破碎岩石动力学试验研究

胡毕伟(),尹土兵(),李夕兵   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2019-12-24 修回日期:2020-03-25 出版日期:2020-08-31 发布日期:2020-08-27
  • 通讯作者: 尹土兵 E-mail:406281952@qq.com;tubing_yin@mail.csu.edu.cn
  • 作者简介:胡毕伟(1992-),男,江西赣州人,硕士研究生,从事岩石破碎理论和技术研究工作。406281952@qq.com
  • 基金资助:
    湖南省自然科学基金项目“温压耦合与循环动力扰动作用下岩石的损伤演化及微观破裂机理研究”(2017JJ3389);中南大学创新项目“研究生自主创新项目”(2019zzts662)

Experimental Study on Mechanical Impact Breaking Rock with Microwave Radiation

Biwei HU(),Tubing YIN(),Xibing LI   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2019-12-24 Revised:2020-03-25 Online:2020-08-31 Published:2020-08-27
  • Contact: Tubing YIN E-mail:406281952@qq.com;tubing_yin@mail.csu.edu.cn

摘要:

微波辅助冲击式破岩是实现快速破碎硬岩的重要手段,开展微波辐射对岩石抗冲击性能的研究具有重要的理论和实际意义。采用工业微波炉对砂岩进行不同功率和不同时间的辐射试验,测试了砂岩在辐射前后的波速、孔隙率和动态力学强度。结果发现:在5 kW的辐射功率下砂岩升温速率达到1.29 ℃/s,3 kW的辐射功率下达到1.04 ℃/s;微波辐射后砂岩波速不断降低,孔隙率不断增大,5 kW辐射4 min后波速降低了34%,孔隙率增加了近70%;在5 kW和3 kW辐射4 min后,砂岩动态压缩强度分别降低了60.4 MPa和44 MPa。研究结果说明微波辐射能够使砂岩快速升温,在热应力的作用下试样内部产生裂纹并扩展,使得波速下降而孔隙度增大。辐射加热大幅地降低了砂岩动态压缩强度。

关键词: 微波辐射, 动态压缩强度, 纵波波速, 孔隙率, 核磁共振

Abstract:

In industrial production,dynamic load rock breaking equipment is widely used in metal and non-metal mines,such as drill,downhole drill and cable drill.Mechanical rock breaking is often faced with such problems as low crushing efficiency,poor crushing effect and expensive equipment.Therefore,it is necessary to find an efficient,simple and safe method to break the rock.Microwave-assisted percussive rock breaking is an important means to break hard rock quickly.It is of great theoretical and practical significance to study the impact resistance of rock by microwave radiation.In this paper,an industrial microwave oven was used to test the radiation of sandstone with different power and time.The wave velocity of sandstone before and after radiation were measured and the porosity of rock before and after radiation were measured by nuclear magnetic resonance equipment.Then,the dynamic compressive mechanical strength of rock was tested by SHPB method,and the rock failure process and characteristics were recorded by high-speed camera.The results show that under the microwave radiation,the sandstone heating speed is very fast.Under the radiation power of 5 kW,the sandstone heating rate reaches 1.29 ℃/s,and under the condition of 3 kW,it reaches 1.04 ℃/s.After the microwave radiation,the wave velocity of sandstone decrease continuously and the porosity increase continuously.After 5 kW radiation for 4 min,the wave velocity decreases by 34% and the porosity increases by nearly 70%.The dynamic compressive strength of sandstone is also continuously reduced,and after 5 kW and 3 kW radiation for 4 min,it decreases by 60.4 MPa and 44 MPa respectively.Under the action of impact stress,rock shows radial failure modes and axial failure modes.The results show that microwave radiation can rapidly heat up sandstone.Because of the thermal stress,cracks are generated inside the sample then spread,which makes the wave velocity decrease and the porosity increase and the dynamic compressive strength decrease drastically.

Key words: picrowave irradiation, dynamic compressive strength, P-wave velocity, porosity, nuclear magnetic resonance

中图分类号: 

  • TD05

表1

砂岩基本力学参数"

参数名称参数值参数名称参数值
弹性模量E/GPa14.76密度ρ/ (g·cm-3)2.56
泊松比υ0.36单轴抗压强度σ/MPa84.57
纵波波速V/(m·s-13 137.54

图1

砂岩试样光学薄片和XRD图Qtz-石英;Pl-斜长石;Kfs-钾长石"

表2

砂岩矿物组成及其吸波能力"

矿物类型矿物质量百分比/%矿物吸波能力粒径/mm
石英41.72非常弱0.06~0.40
长石34.490.05~0.40

蒙脱石

滑石

9.35

6.18

0.10~0.40

0.02~0.06

方解石4.730.01~0.03
赤铁矿5.53很强0.20~0.40

图2

试验研究流程示意图"

图3

岩石升温曲线及岩石热裂纹情况"

图4

微波辐射前后砂岩波速变化"

图5

核磁共振T2曲线图"

图6

微波辐射前后砂岩孔隙率变化"

图7

砂岩动态压缩力学应力—应变曲线"

图8

砂岩动态压缩强度与辐射时间关系图"

图9

冲击破坏过程高速摄像图"

1 卢高明,李元辉,Hassani F,等.微波辅助机械破岩试验和理论研究进展[J].岩土工程学报,2016,38(8):1497-1506.
Lu Gaoming,Li Yuanhui,Hassani F,et al.Review of theoretical and experimental studies on mechanical rock fragmentationusing microwave-assisted approach[J].Chinese Journal of Geotechnical Engineering,2016,38(8):1497-1506.
2 Haque K E.Microwave energy for mineral treatment processes—A brief review[J].International Journal of Mineral Processing,1999,57(1):1-24.
3 喻清,丁德馨,张炬.微波辐照技术在矿业中的应用现状及发展趋势[J].黄金科学技术,2017,25(1):112-120.
Yu Qing,Ding Dexin,Zhang Ju. Application status and development trend of microwave irradiation technology in mining[J].Gold Science and Technology,2017,25(1):112-120.
4 Lu G M,Feng X T,Li Y H,et al.Experimental investigation on the effects of microwave treatment on basalt heating,mechanical strength,and fragmentation[J].Rock Mechanics and Rock Engineering,2019,52(8):2535-2549.
5 Peinsitt T,Kuchar F,Hartlieb P,et al.Microwave heating of dry and water saturated basalt,granite and sandstone[J].International Journal of Mining and Mineral Engineering,2010,21(1):18-29.
6 Hassani F,Nekoovaght P M,Gharib N.The influence of microwave irradiation on rocks for microwaveassisted underground excavation[J].Journal of Rock Mechanics and Geotechnical Engineering,2016,8(1):1-15.
7 Santos J,Rossi A.Influence of rock chemical composition in microwave heating and decontamination of drill cuttings[J].Materials Science Forum,2017,899(1):469-473.
8 Lu G M,Li Y H,Hassani F,et al.The influence of microwave irradiation on thermal properties of main rock-forming minerals[J].Applied Thermal Engineering,2017,112(1):1523-1532.
9 Olubambi P A.Influence of microwave pretreatment on the bioleaching behaviour of low-grade complex sulphide ores[J].Hydrometallurgy,2009,95(1/2):159-165.
10 周子龙,李夕兵,刘希灵.深部岩石破碎方法[J].采矿与安全工程学报,2005,22(3):63-65.
Zhou Zilong,Li Xibing,Liu Xiling.Rock fragmentation method in deep level[J].Journal of Mining and Safety Engineering,2005,22(3):63-65.
11 赵伏军,李夕兵,冯涛,等.动静载荷耦合作用下岩石破碎理论分析及试验研究[J].岩石力学与工程学报,2005,24(8):1315-1320.
Zhao Fujun,Li Xibing,Feng Tao,et al.Theoretical analysis and experiments of rock fragmentation under coupling dynamic and static loads[J].Chinese Journal of Rock Mechanics and Rock Engineering,2005,24(8):1315-1320.
12 Thostenson E,Chou T W.Microwave processing:Fundamentals and applications[J].Composites Part A: Applied Science and Manufacturing,1999,30(9):1055-1071.
13 Frosch G P,Tillich J E,Haselmeier R,et al.Probing the pore space of geothermal reservoir sandstones by Nuclear Magnetic Resonance[J].Geothermics,2000,29(6):671-687.
14 Liu D Q,Ge H K,Liu J R,et al.Experimental investigation on aqueous phase migration in unconventional gas reservoir rock samples by nuclear magnetic resonance[J].Journal of Natural Gas Science and Engineering,2016,36:837-851.
15 Zhou K Q,Chu Z H,Zhang Y Z,et al.Research of the detection method and thermal cracking of rock[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(4):412-416.
16 Li X B,Gong F Q,Tao M,et al.Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining:A review[J].Journal of Rock Mechanics and Geotechnical Engineering,2017,9(4):767-782.
17 Li X B,Lok T S,Zhao J.Dynamic characteristics of granite subjected to intermediate loading rate[J].Rock Mechanics and Rock Engineering,2005,38(1):21-39.
18 Zhang W Q,Sun Q,Hao S Q,et al.Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment[J].Applied Thermal Engineering,2016,98:1297-1304.
19 Li H,Shi S L,Lu J X,et al.Pore structure and multifractal analysis of coal subjected to microwave heating[J].Powder Technology,2019,346:97-108.
20 朱晶晶,李夕兵,宫凤强,等.单轴循环冲击下岩石的动力学特性及其损伤模型研究[J].岩土工程学报,2013,35(3):531-539.
Zhu Jingjing,Li Xibing,Gong Fengqiang,et al.Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads[J].Chinese Journal of Geotechnical Engineering,2013,35(3):531-539.
21 宫凤强,李夕兵,刘希灵,等.一维动静组合加载下砂岩动力学特性的试验研究[J].岩石力学与工程学报,2010,29(10):2076-2085.
Gong Fengqiang,Li Xibing,Liu Xiling,et al.Experimental study of dynamic characteristics of sandstone under one-dimensional dynamic coupled static and dynamic loads[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(10):2076-2085.
22 刘柏禄,潘建忠,谢世勇.岩石破碎方法的研究现状及展望[J].中国钨业,2011,26(1):15-19.
Liu Bolu,Pan Jianzhong,Xie Shiyong.On the research development of back fragment and its prospect[J].China Tungsten Industry,2011,26(1):15-19.
[1] 毛思羽, 曹平, 李建雄, 欧传景. 基于核磁共振T2谱图的裂隙砂岩疲劳损伤分析[J]. 黄金科学技术, 2020, 28(3): 430-441.
[2] 卓毓龙,王晓军,曹世荣,邓书强,李永欣,韩建文 . 渗流作用下稀土矿孔隙结构与强度弱化关系研究[J]. 黄金科学技术, 2017, 25(5): 101-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郝春光,王元魁,王平,王德全. 露采转井采过渡期稳产的实践[J]. J4, 2008, 16(4): 70 -71 .
[2] 蔡寅峰,王永智,郭忠林. 小铁山矿地压活动规律的分析与研究[J]. J4, 2004, 12(6): 19 -22 .
[3] 石同吉. 氰化提金技术发展现状评述[J]. J4, 2001, 9(6): 22 -29 .
[4] 王龙成. 甘肃北山南带西段金成矿带控矿因素特征[J]. J4, 2007, 15(2): 15 -19 .
[5] 赵建国, 王龙成. 红石泉铀矿床矿化特征及成因类型探讨[J]. J4, 2009, 17(1): 38 -41 .
[6] 苏仁奎, 于建波, 褚耀君, 宋长葆. 黑龙江东安金矿区地质特征及找矿前景[J]. J4, 2006, 14(1): 10 -13 .
[7] [苏]C.M. Валакирев等,韩佐生译自苏《有色冶金》1987,No.8. 尾矿氰化法提金:脉动反应塔的选型[J]. J4, 1989, 0(1): 30 -33 .
[8] 鲁挑建. 再论甘肃马泉金矿矿石品位分布特征及品位预测[J]. J4, 2011, 19(2): 1 -7 .
[9] 李石桥,贾红芳,谢杰桥,刘多林. 甘肃阳山金矿床充水因素分析[J]. J4, 2012, 20(1): 82 -85 .
[10] 吴富强, 梁胜跃. 云南东川地区播卡金矿成矿规律研究[J]. J4, 2011, 19(1): 1 -5 .