[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Optimization of Control Parameters for Underground Load-Haul-Dump Machine Based on LQR-QPSO
Received date: 2020-09-17
Revised date: 2020-10-26
Online published: 2021-03-22
With the increase of mining depth,the mining operation environment is worse and worse.It is of great significance to realize the underground unmanned load-haul-dump(LHD) machine to ensure the safe and efficient production of mine enterprises.In underground operation,the long,low articulated body of under-ground LHD machine has the characteristics of high mass,high inertia and high steering delay,which makes the precise tracking of the scraper path a difficult point for its realization of unmanned driving.As an important technique of path tracing control,the control algorithm based on optimization principle often has the problem of parameter selection and adjustment.In industrial applications,manual trial-and-error methods are commonly used for parameter selection.This method not only consumes a lot of human and time costs,but also makes it difficult to ensure the accuracy because of the lack of relevant experience of the operator.In this paper,the method of parameter optimization for linear quadratic regulator(LQR) state feedback controller by quantum-behaved particle swarm optimization(QPSO) algorithm was proposed.The LQR state feedback controller was cons-tructed based on error dynamics model.After parameter optimization,the maximum lateral error of path tracking is not more than 0.23 m.In a large number of repeated experiments,it is found that the standard particle swarm optimization(PSO) algorithm is difficult to find the proper parameter that can make the controller cross deviation lower than 0.5 m in 100 iterations.The QPSO algorithm has found the optimal parameter which meets the condition in the 10 repeated experiments.In 100 iterations,the fitness of the PSO algorithm tends to converge at 21 iterations,while that of the QPSO algorithm converges to a lower level than that of the PSO in the seventh iteration.The maximal lateral position deviation of the path tracking controller is reduced by 53.4%.It can be seen that the parameter optimization ability of the QPSO algorithm is obviously stronger than that of the PSO algorithm.The QPSO algorithm has faster optimization speed and higher success rate than the PSO algorithm.The control parameters of the LQR state feedback controller are automated by the QPSO algorithm.The design and parameter tuning process of the entire path tracking controller has important reference significance for realizing the unmanned driving of underground LHD machine.
Yongchun LIU , Liguan WANG , Jiaxi WU . Optimization of Control Parameters for Underground Load-Haul-Dump Machine Based on LQR-QPSO[J]. Gold Science and Technology, 2021 , 29(1) : 25 -34 . DOI: 10.11872/j.issn.1005-2518.2021.01.167
山东黄金一体化智慧管控平台暨ERP项目启动
山东黄金集团一体化智慧管控平台暨ERP项目近日启动,这意味着山东黄金正式开启数字化转型新征程。
山东黄金集团董事长陈玉民在项目启动会议上表示,ERP系统能否在全集团实现安全稳定高效运行,能否广泛深入地应用,直接影响到集团“十四五”战略目标的实现。他要求思爱普、埃森哲、英诺森等支持方要组织精兵强将,全力以赴支持项目按期顺利完成。
会上,项目咨询实施公司埃森哲(中国)有限公司作了关于ERP项目启动情况的汇报;相关领导宣读了《关于山东黄金一体化智慧管控平台暨ERP项目启动的通知》,与业务部门代表签订了项目责任书;项目团队代表宣誓,表示坚决服从集团部署,确保项目成功上线;思爱普(中国)有限公司、埃森哲(中国)有限公司、英诺森软件科技有限公司三家项目合作伙伴主要领导分别作了发言;集团领导及项目合作伙伴领导上台共同启动山东黄金一体化智慧管控平台暨ERP项目。
据悉,该项目预计于12月正式上线,将帮助山东黄金集团搭建统一的基础数据标准,建强企业后台,支撑纵向管控模式落地,实现横向业务协同,加速集团管控和业务全流程的革新,以数字化转型促进业务的快速扩张,助力山东黄金“致力全球领先,跻身世界前五”目标的顺利实现。
(来源:中国矿业报)
http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-1-25.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
方伟,孙俊,谢振平,等,2010.量子粒子群优化算法的收敛性分析及控制参数研究[J].物理学报,59(6):3686-3694.
|
|
郭鑫,战凯,顾洪枢,等,2009.无人操纵铲运机井下导航研究[J].有色金属,61(4):143-147.
|
|
康燕,孙俊,须文波,2007.具有量子行为的粒子群优化算法的参数选择[J].计算机工程与应用,43(23):40-42.
|
|
李国勇,2008.最优控制理论与应用[M].北京:国防工业出版社: 246.
|
|
李建国,战凯,石峰,等,2015.基于最优轨迹跟踪的地下铲运机无人驾驶技术[J].农业机械学报,46(12):323-328.
|
|
刘洪波,王秀坤,谭国真,2006.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,21(6):636-640.
|
|
罗维东,马宝全,孟宇,等,2020.基于NMPC的地下无人铲运机反应式导航系统[J].煤炭学报,45(4):1536-1546.
|
|
孟宇,汪钰,顾青,等,2018.基于预见位姿信息的铰接式车辆LQR-GA路径跟踪控制[J].农业机械学报,49(6):375-384.
|
|
王勇,2000.非线性PID控制的研究[D].南京:南京理工大学.
|
|
张栋林,2002.地下铲运机[M].北京:冶金工业出版社: 509.
|
|
赵翾,杨珏,张文明,等,2015.农用轮式铰接车辆滑模轨迹跟踪控制算法[J].农业工程学报,31(10):198-203.
|
|
郑伟博,2016.粒子群优化算法的改进及其应用研究[D].青岛:青岛大学.
|
|
邹忱忱,2017.基于粒子群算法的LQR直线二级倒立摆的控制研究[D].西安:西安科技大学.
|
/
| 〈 |
|
〉 |