[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]

Optimization of Control Parameters for Underground Load-Haul-Dump Machine Based on LQR-QPSO

  • Yongchun LIU , 1, 2 ,
  • Liguan WANG , 1, 2 ,
  • Jiaxi WU 1, 2
Expand
  • 1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • 2. Digital Mine Research Center,Central South University,Changsha 410083,Hunan,China

Received date: 2020-09-17

  Revised date: 2020-10-26

  Online published: 2021-03-22

Highlights

With the increase of mining depth,the mining operation environment is worse and worse.It is of great significance to realize the underground unmanned load-haul-dump(LHD) machine to ensure the safe and efficient production of mine enterprises.In underground operation,the long,low articulated body of under-ground LHD machine has the characteristics of high mass,high inertia and high steering delay,which makes the precise tracking of the scraper path a difficult point for its realization of unmanned driving.As an important technique of path tracing control,the control algorithm based on optimization principle often has the problem of parameter selection and adjustment.In industrial applications,manual trial-and-error methods are commonly used for parameter selection.This method not only consumes a lot of human and time costs,but also makes it difficult to ensure the accuracy because of the lack of relevant experience of the operator.In this paper,the method of parameter optimization for linear quadratic regulator(LQR) state feedback controller by quantum-behaved particle swarm optimization(QPSO) algorithm was proposed.The LQR state feedback controller was cons-tructed based on error dynamics model.After parameter optimization,the maximum lateral error of path tracking is not more than 0.23 m.In a large number of repeated experiments,it is found that the standard particle swarm optimization(PSO) algorithm is difficult to find the proper parameter that can make the controller cross deviation lower than 0.5 m in 100 iterations.The QPSO algorithm has found the optimal parameter which meets the condition in the 10 repeated experiments.In 100 iterations,the fitness of the PSO algorithm tends to converge at 21 iterations,while that of the QPSO algorithm converges to a lower level than that of the PSO in the seventh iteration.The maximal lateral position deviation of the path tracking controller is reduced by 53.4%.It can be seen that the parameter optimization ability of the QPSO algorithm is obviously stronger than that of the PSO algorithm.The QPSO algorithm has faster optimization speed and higher success rate than the PSO algorithm.The control parameters of the LQR state feedback controller are automated by the QPSO algorithm.The design and parameter tuning process of the entire path tracking controller has important reference significance for realizing the unmanned driving of underground LHD machine.

Cite this article

Yongchun LIU , Liguan WANG , Jiaxi WU . Optimization of Control Parameters for Underground Load-Haul-Dump Machine Based on LQR-QPSO[J]. Gold Science and Technology, 2021 , 29(1) : 25 -34 . DOI: 10.11872/j.issn.1005-2518.2021.01.167

[an error occurred while processing this directive]

山东黄金一体化智慧管控平台暨ERP项目启动

山东黄金集团一体化智慧管控平台暨ERP项目近日启动,这意味着山东黄金正式开启数字化转型新征程。

山东黄金集团董事长陈玉民在项目启动会议上表示,ERP系统能否在全集团实现安全稳定高效运行,能否广泛深入地应用,直接影响到集团“十四五”战略目标的实现。他要求思爱普、埃森哲、英诺森等支持方要组织精兵强将,全力以赴支持项目按期顺利完成。

会上,项目咨询实施公司埃森哲(中国)有限公司作了关于ERP项目启动情况的汇报;相关领导宣读了《关于山东黄金一体化智慧管控平台暨ERP项目启动的通知》,与业务部门代表签订了项目责任书;项目团队代表宣誓,表示坚决服从集团部署,确保项目成功上线;思爱普(中国)有限公司、埃森哲(中国)有限公司、英诺森软件科技有限公司三家项目合作伙伴主要领导分别作了发言;集团领导及项目合作伙伴领导上台共同启动山东黄金一体化智慧管控平台暨ERP项目。

据悉,该项目预计于12月正式上线,将帮助山东黄金集团搭建统一的基础数据标准,建强企业后台,支撑纵向管控模式落地,实现横向业务协同,加速集团管控和业务全流程的革新,以数字化转型促进业务的快速扩张,助力山东黄金“致力全球领先,跻身世界前五”目标的顺利实现。

(来源:中国矿业报)

http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-1-25.shtml

Fang Wei Sun Jun Xie Zhenping al et2010.Convergence analysis of quantum-behaved particle swarm optimization algorithm and study on its control parameter[J].Journal of Physics59(6):3686-3694.

Guo Xin Zhan Kai Gu Hongshu al et2009.Navigation system research of unmanned scraper[J].Nonferrous Metals61(4):143-147.

Gupta S Tripathi R K2014.Optimal LQR controller in CSC based STATCOM using GA and PSO[J].Archives of Electrical Engineering63(3):469-487.

Kang Yan Sun Jun Xu Wenbo2007.Parameter selection of quantum-behaved particle swarm optimization[J].Computer Engineering and Applications43(23):40-42.

Kemmoé Tchomté S Gourgand M2009.Particle swarm optimization:A study of particle displacement for solving continuous and combinatorial optimization problems(Article)[J].International Journal of Production Economics121(1):57-67.

Kennedy J Eberhart R1995.Particle swarm optimization[C]//International Conference on Neural Networks.Perth:IEEE:1942-1948.

Li Guoyong2008.Optimal Control Theory and Application[M].Beijing:National Defence Industry Press: 246.

Li Jianguo Zhan Kai Shi Feng al et2015.Auto-driving technology for underground scraper based on optimal trajectory tracking[J].Journal of Agricultural Engineering46(12):323-328.

Liu Hongbo Wang Xiukun Tan Guozhen2006.Convergence analysis of particle swarm optimization and its improved algorithm based on Chaos[J].Control and Decision21(6):636-640.

Luo Weidong Ma Baoquan Meng Yu al et2020.Reactive navigation system of underground unmanned Load-Haul-Dump unit based on NMPC[J].Journal of China Coal Society45(4):1536-1546.

Meng Yu Wang Jue Gu Qing al et2018.LQR- GA path tracking control of articulated vehicle based on predictive information [J].Transactions of the Chinese Society for Agricultural Machinery49(6):375-384.

Nayl T Nikolakopoulos G Gustafsson T2015.Effect of kinematic parameters on MPC based on-line motion planning for an articulated vehicle[J].Robotics and Autonomous Systems,70:16-24.

Ridley P Corke P2003.Load haul dump vehicle kinematics and control[J].Journal of Dynamic Systems. Measurement and Control125(1):54-59.

Sasiadek J Z Lu Y2005.Path tracking of an autonomous LHD articulated vehicle [C]//The 16th IFAC World Congress.Prague:IFAC:55-60.

Shi Y Eberhart R1998.A modified particle swarm optimizer[C]//IEEE International Conference on Evolutionary Computation.Anchorage: IEEE:69-73.

Shiroma N Ishikawa S Inoue K al et2009.Nonlinear straight path tracking control for an articulated steering type vehicle [C]//SICE Annual Conference.Fukuoka:IEEE:2206-2211.

Sun J Feng B Xu W2004.Particle swarm optimization with particles having quantum behavior[C]//Congress on Evolutionary Computation.Portland:IEEE,(1):325-331.

Van den Bergh F2001.An Analysis of Particle Swarm Optimizers[D].Pretoria:University of Pretoria.

Wang Yong2000.Research on Nonlinear PID Control[D].Nanjing:Nanjing University of Science and Technology.

Zhang Donglin2002.Undergound LHD[M].Beijing:Metallurgical Industry Press: 509.

Zhao Xuan Yang Jue Zhang Wenming al et2015.Sliding mode control algorithm for path tracking of articulated dump truck[J].Journal of Agricultural Engineering31(10):198-203.

Zheng Weibo2016.Research on Improvement of Particle Swarm Optimization Algorithm and Its Application[D].Qingdao:Qingdao University

Zou Chenchen2017.Study on the Control of LQR Linear Two-stage Inverted Pendulum Based on Particle Swarm Optimization[D].Xi’an:Xi’an University of Science and Technology.

方伟,孙俊,谢振平,等,2010.量子粒子群优化算法的收敛性分析及控制参数研究[J].物理学报59(6):3686-3694.

郭鑫,战凯,顾洪枢,等,2009.无人操纵铲运机井下导航研究[J].有色金属61(4):143-147.

康燕,孙俊,须文波,2007.具有量子行为的粒子群优化算法的参数选择[J].计算机工程与应用43(23):40-42.

李国勇,2008.最优控制理论与应用[M].北京:国防工业出版社: 246.

李建国,战凯,石峰,等,2015.基于最优轨迹跟踪的地下铲运机无人驾驶技术[J].农业机械学报46(12):323-328.

刘洪波,王秀坤,谭国真,2006.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策21(6):636-640.

罗维东,马宝全,孟宇,等,2020.基于NMPC的地下无人铲运机反应式导航系统[J].煤炭学报45(4):1536-1546.

孟宇,汪钰,顾青,等,2018.基于预见位姿信息的铰接式车辆LQR-GA路径跟踪控制[J].农业机械学报49(6):375-384.

王勇,2000.非线性PID控制的研究[D].南京:南京理工大学.

张栋林,2002.地下铲运机[M].北京:冶金工业出版社: 509.

赵翾,杨珏,张文明,等,2015.农用轮式铰接车辆滑模轨迹跟踪控制算法[J].农业工程学报31(10):198-203.

郑伟博,2016.粒子群优化算法的改进及其应用研究[D].青岛:青岛大学.

邹忱忱,2017.基于粒子群算法的LQR直线二级倒立摆的控制研究[D].西安:西安科技大学.

Outlines

/

[an error occurred while processing this directive]