img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2018, 26(6): 689-705 doi: 10.11872/j.issn.1005-2518.2018.06.689

江南古陆西北部塔下岩体年代学及成因研究

位鸥祥,1, 张达玉,1,*, 刘劲松1,2, 陈雪锋1, 叶龙翔1, 蒋华1, 钱祥2, 周涛发1

1. 合肥工业大学资源与环境工程学院,安徽 合肥 230009

2. 安徽省地质矿产勘查局311地质队,安徽 安庆 247000

Geochronology and Genesis of Taxia Granodiorite Intrusion in the Northwest Jiangnan Proterozoic Terrane

WEI Ouxiang,1, ZHANG Dayu,1,*, LIU Jinsong1,2, CHEN Xuefeng1, YE Longxiang1, JIANG Hua1, QIAN Xiang2, ZHOU Taofa1

1. School of Resources and Environmental Engineering,Hefei University of Technology,Hefei 230009,Anhui,China

2. No. 311 Geological Party,Bureau of Geology and Mineral Resources Exploration of Anhui Province,Anqing 247000,Anhui,China

通讯作者: 张达玉(1985-),男,安徽安庆人,副教授,从事矿物学、岩石学和矿床学研究工作。dayuzhang@hfut.edu.cn

收稿日期: 2018-03-16   修回日期: 2018-06-10   网络出版日期: 2019-01-11

基金资助: 科技部深地资源勘查开采专项“长江中下游、钦杭成矿带典型成矿系统的深部过程与时空演化”(编号:2016YFC0600206)、国家自然科学基金项目“长江中下游、钦杭成矿带典型成矿系统的深部过程与时空演化”(编号: 41341390441)和中央高校基本科研业务费专项“皖南地区中酸性侵入岩的铜金成矿潜力研究”(编号:JZ2016HGTB0730)联合资助

Received: 2018-03-16   Revised: 2018-06-10   Online: 2019-01-11

作者简介 About authors

位鸥祥(1993-),男,山东青岛人,硕士研究生,从事地质工程研究工作 , E-mail:yaouwei@163.com

摘要

塔下岩体位于东至地区南部,是除戴村岩体之外该区出露的第2个中酸性侵入体。通过对塔下岩体进行了地质特征、年代学和地球化学研究,结果显示:塔下岩体形成于早白垩世(~142 Ma),为江南古陆燕山期第一阶段(154~138 Ma)岩浆活动的产物。塔下花岗闪长岩体主量元素显示,其SiO2质量分数在68.12%~71.75%之间,K2O+Na2O质量分数在6.15%~7.88%之间,铝过饱和度(A/CNK值)在0.98~1.39之间,指示该岩体具有富硅、弱过铝质、钙碱性的I型花岗岩特点;塔下花岗闪长岩的微量元素Rb、Th、U、K富集,Ba和Sr亏损;稀土总量(∑REE)在109.59×10-6~135.49×10-6之间,轻重稀土比值(LREE/HREE)在17.37~20.73之间,轻重稀土分异明显,具有与壳源一致的右倾特征,Eu负异常不明显。综合地质和地球化学分析,塔下花岗闪长岩体的初始岩浆是在古太平洋西向俯冲背景下,由幔源物质混入的下地壳源区发生部分熔融作用产生,上升过程中发生了显著的围岩混染作用。

关键词: LA-ICP-MS U-Pb定年 ; 地球化学 ; 岩石成因 ; 东至地区 ; 江南古陆

Abstract

Taxia granodiorite intrusion is located in the southern Dongzhi district,western Jiangnan Proterozoic Terrane(JPT),which is another known granitoid intrusion after Daicun intrusion in this area.This study systematically researched the geological,geochronological and geochemical characteristics of Taxia granodiorite intrusion.The results show that Taxia granodiorite intrusion was intruded at early Cretaceous(~142 Ma),corresponding to the first stage (154~138 Ma) of Yanshanian magmatism in the JPT area.The SiO2content of the Taxia granodiorite samples are between 68.12% and 71.75%,the K2O+Na2O value is 6.15% to 7.88%,and the A/CNK ratios is 0.98 to 1.39,which suggest that the lithology of Taxia granodiorite intrusion is high silica,peraluminous and calc-alkaline Ⅰ-type granite.Trace elements are enriched with Rb,Th,U,K and depleted with Ba and Sr elements.The ∑REE varies from 109.59×10-6to 135.49×10-6,and enriched with LREE and depleted with HREE(LREE/HREE are from 17.37 to 20.73),the visible right-trending REE patter is corresponding to the crust-derived magmatism.Combining geological,geochronological and geochemical characteristics,Taxia granodiorite intrusion was formed in the Yanshanian paleo-Pacific Plate subduction background,its melt was probably formed from partial melting of lower crust with mantle materials addedtion which experienced strong wall rock contamination during its emplacement.

Keywords: LA-ICP-MS U-Pb dating ; geochemistry ; petrogenesis ; Dongzhi district ; Jiangnan Proterozoic Terrane

PDF (9651KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

位鸥祥, 张达玉, 刘劲松, 陈雪锋, 叶龙翔, 蒋华, 钱祥, 周涛发. 江南古陆西北部塔下岩体年代学及成因研究[J]. 黄金科学技术, 2018, 26(6): 689-705 doi:10.11872/j.issn.1005-2518.2018.06.689

WEI Ouxiang, ZHANG Dayu, LIU Jinsong, CHEN Xuefeng, YE Longxiang, JIANG Hua, QIAN Xiang, ZHOU Taofa. Geochronology and Genesis of Taxia Granodiorite Intrusion in the Northwest Jiangnan Proterozoic Terrane[J]. Gold Science and Technology, 2018, 26(6): 689-705 doi:10.11872/j.issn.1005-2518.2018.06.689

中酸性侵入体是在特定的地球动力学背景下由地壳或岩石圈地幔部分熔融的岩浆上升侵位到浅部地壳的产物[2],是反演区域构造演化和地球深部过程的天然探针[3]。同时,中酸性岩体是热液矿床成矿作用的重要成矿物质和能量来源[4,5],因此,中酸性侵入体成因一直是地学界关注的热点科学问题之一[6]。江南古陆位于下扬子陆块的东部,以出露前寒武纪区域变质基底、发育晋宁期(900~750 Ma)和燕山期(155~120 Ma)2期中酸性岩浆作用为特征(图1),近年来,围绕这些中酸性岩体陆续勘探发现了朱溪钨矿床、东源钨矿床、逍遥等大型—超大型钨铜铅锌多金属等岩浆—热液矿床,成为我国重要的有色矿产资源聚集区[7]。江南古陆中酸性侵入体集中分布于该区东部,前人对该区东部地区岩浆岩的地质特征、年代学[8,9]和地球化学[10,11]特征研究表明,该区晋宁期(900~750 Ma)和燕山期(155~120 Ma)2期岩浆岩分别具有高硅高钾过铝质,壳源或壳幔源区以及高钾钙碱性弱过铝质,地壳源区的岩石特点[12,13]。江南古陆中酸性岩浆岩的成因研究大多集中在东部地区,由于西部的东至地区岩浆岩露头零星,一直未引起广泛关注[14]。关于江南古陆西部地区中酸性岩浆岩的形成年代、地球化学特征与东部地区的异同还有待研究。值得指出的是,近年来在西部的东至地区陆续发现有兆吉口、塔下和赵家岭等一系列铅锌多金属矿床,指示该区具备形成与中酸性有关的巨大热液矿床的潜力,关于该区岩浆岩成因及其与成矿之间的关系亟待深入探索。

鉴于此,本研究聚焦于东至南部塔下地区的一个花岗闪长岩株,在野外地质调查和岩相学研究的基础上,开展了锆石LA-ICP-MS U-Pb同位素定年和全岩地球化学研究工作,据此探讨塔下岩体成因及其形成背景,以期为东至地区以及江南古陆中酸性岩浆岩的成因、形成的地质背景研究提供依据。

1 地质特征

1.1 区域地质背景

江南古陆位于皖浙赣交界部位(图1),大地构造位置处于江南古陆与下扬子台坳的过渡带部位,西南部与长江及鄱阳湖相连,北抵牯牛降—黄山—旌德一线,东部与浙西凹陷带相连,以出露中新元古代基地地层为特征。江南古陆出露地层主要为新元古界青白口系历口群葛公镇组和南华系休宁组浅变质岩,寒武系、志留系等地层在该区域上呈零星状分布。区内构造以NNE-NE向断裂为主,其次为NW和近EW向,如祁门—潜口断裂。该地区中酸性侵入岩分布广泛,岩体呈岩基状产出(图1),空间上这些侵入体大多聚集在江南古陆的中东部,大致可划分为南北2个侵入岩带:南部的横山岩体、莲花山岩体、鹅湖岩体、卧龙谷岩体、瑶里岩体、桃岭岩体和灵山岩体等;北部的城安—牯牛降岩体、黟县岩体、休宁岩体、许村岩体、歙县岩体和伏岭岩体等。江南古陆地区与中酸性有关的钨铜金等矿化发育广泛,形成了朱溪、逍遥和东源等大型—超大型钨多金属矿床。

东至地区位于江南古陆西北部,该区出露地层主要为新元古界葛公镇组(Qbg)粉砂质板岩,部分区域出露蓟县系溪口岩群环沙组(Jxh)、牛屋组(Jxn),寒武系荷塘组(Є1ht)。该区主要受NNE向断裂控制,包括东至、葛公镇、龙门尖和高坦等断裂。区内岩浆岩露头零星,目前仅报道戴村和塔下有中酸性侵入体。该区矿化以铅锌和金多金属矿化为主[15]。近年来,在东至地区勘探发现有兆吉口大型铅锌矿床、塔下铅锌矿点和赵家岭金矿点等。

图1

图1   江南古陆北缘地质简图

Fig.1   Geological sketch map of the northern Jiangnan Proterozoic terrane

1.晋宁期花岗岩;2.花岗闪长岩;3.花岗岩;4.新元古界;5.东至地区;6.矿化点;7.银多金属;8.钨钼;9.铅锌;10.金;11.铜钼;12.钨银;13.铜锡


1.2 塔下岩体特征

塔下岩体位于东至地区西南部,江南古陆南花岗岩带内。岩体周边出露地层主要为青白口系葛公镇组上段变泥质粉砂岩和变粉砂质泥岩,少量为蓟县系休宁组下段紫红色中厚层岩屑砂岩、凝灰质粉砂岩、泥岩和第四系。研究区内构造受控于NNE-NE向东至深大断裂,发育有NW向次级断裂,如银子山和余家湾NW向断裂等。该区岩浆岩不发育,仅见塔下岩体出露。

图2

图2   塔下地区区域地质图[15]

Fig.2   Geological map of Taxia area[15]


1 葛公镇地层;2.花岗闪长岩;3.采样点

塔下岩体露头呈岩株状,NE向产出,出露长约700 m,宽度为20~80 m(图2),向北倾伏。塔下岩体的岩性为花岗闪长岩[图3(a)],呈浅肉红色,斑状结构[图3(b)],斑晶主要为钾长石、斜长石和石英,粒径在0.1~2.0 mm之间;另有少量角闪石、黑云母呈星点状分布[图3(c)],基质主要为斜长石和石英微晶。岩体发生了弱硅化、绢云母化和黄铁矿化等[图3(c),3(d)]。

图3

图3   塔下岩浆岩野外露头、手标本及镜下照片

Fig.3   Geological field outcrop,hand specimen and photomicrographs of granodiorite from Taxia area

(a)野外露头;(b)手标本;(c)石英、斜长石和黑云母;(d)黄铁矿及黑云母

Qtz-石英;Pl-斜长石;Bt-黑云母;Ms-白云母;Py-黄铁矿


2 样品采集与分析

对塔下花岗闪长岩出露较好的采石场进行了系统采样,采样点如图2所示。在岩相学观察基础上,对代表性样品进行了锆石LA-ICP-MS U-Pb定年、全岩主量和微量元素分析测试。

锆石206Pb/238U测年分析工作在合肥工业大学资源与环境工程学院LA-ICP-MS实验室完成。锆石制靶和阴极发光照相在南京宏创地质勘查技术服务有限公司完成。锆石LA-ICP-MS U-Pb分析测试仪器为德国Geolas pro 193 nm ArF准分子激光器和Agilent 7500a ICP-MS质谱仪。采用美国国家标准技术研究院研制的人工合成硅酸盐玻璃标准参考物质NIST SRM610和国际标准锆石91500作为同位素分析外标,Si作为内标。锆石年龄分析采用激光,分析直径为30 µm,激光剥蚀频率为6 Hz,激光能量为10 J/cm2。锆石同位素数据处理采用ICPMSDataCal(V8.6版)软件。普通铅校正采用Andersen的方法[16],年龄计算及谐和图的绘制采用Isoplot(2.49版)软件。塔下地区的花岗闪长岩样品的主量元素和微量、稀土元素分析实验在澳实矿物实验室(广州)完成。详细流程参见文献[17]。

3 分析结果

3.1 锆石206Pb/238U 同位素测年

本次测年的锆石取自塔下岩体新鲜花岗闪长岩样品(样品编号为TX-02)。锆石岩相学和阴极发光图像[图4(a)]显示,锆石样品均呈自形—半自形短柱状,锆石多具有明显的核—边结构,且边部CL图像颜色较深、核部较浅,锆石总体Th、U含量较高,Th/U比值较大(>0.4),具有岩浆成因特征[18,19]。在岩相学研究基础上,对塔下花岗闪长岩的34颗锆石进行了44组LA-ICP-MS U-Pb同位素年代学分析,具体激光分析点位和分析结果如表1所示。44组锆石的测年协和曲线[图4(b)]显示,206Pb/238U年龄在114~1 976 Ma之间,主要集中于(819±20)Ma(MSWD=2.0,n=12)[图4(c)]和(142±12)Ma(MSWD=6.7,n=6)[图4(d)]2个峰期。

图4

图4   塔下花岗闪长岩中锆石阴极发光图像及U-Pb年龄谐和图

Fig.4   Zircon CL images and U-Pb ages concordia diagram of Taxia granodiorite

(a)锆石以及发光图像及测试点年龄;(b)锆石U-Pb年龄谐和图;(c)晋宁期锆石年龄谐和图;(d)燕山期锆石年龄谐和图


表1   塔下花岗闪长岩中锆石的LA-ICP-MS U-Pb年龄测定结果

Table 1  LA-ICP-MS U-Pb dating results of zircons from Taxia granodiorite

样品编号

Pbc

/(×10-6

238U

/(×10-6

232Th

/(×10-6

232Th/238U207Pb/206Pb1ơ207Pb/235U1ơ206Pb/238U1ơ207Pb/206Pb年龄/Ma1ơ

207Pb/235U

年龄/Ma

1ơ

206Pb/238U

年龄/Ma

1ơ
TX-02-0113.83 9051 5750.400.08880.00420.22540.01350.01780.00061 40091.120611.21143.8
TX-02-020.7977.044.00.570.06560.00251.24070.04350.13210.004079475.081919.780022.5
TX-02-030.951 3832590.190.05750.00190.31250.01140.03850.001350976.82768.82437.9
TX-02-040.411841931.050.06620.00201.32650.04080.14620.004181364.885717.887923.3
TX-02-058.671 9464140.210.07400.00220.86080.02710.08460.00251 04359.363114.852314.8
TX-02-062.333912490.640.06260.00221.20520.03650.13420.003869476.780316.881221.6
TX-02-072.517221570.220.05560.00230.28810.01210.03740.001443592.62579.52378.6
TX-02-083.152 5831 6360.630.06710.00250.24180.00860.02540.000883977.82207.01625.0
TX-02-091.5225582.60.320.06450.00270.92720.03870.10240.003976161.166620.462822.9
TX-02-101.458382560.310.06420.00200.31910.01380.03570.001475068.528110.72268.5
TX-02-115.822 9241 6690.570.06330.00210.17680.00590.02030.000671869.61655.11293.6
TX-02-129.684201470.350.06780.00210.85220.03970.09070.003986163.062621.756023.1
TX-02-132.044191460.350.07230.00300.84630.03030.08450.002499483.362316.652314.4
TX-02-142.3534244.40.130.06270.00240.24720.01060.02880.001169886.12248.71836.9
TX-02-150.4016071.30.450.06780.00251.29750.04570.13920.004186577.884520.284023.1
TX-02-161.861431040.730.06640.00231.30420.04600.14220.004082077.984820.385722.8
TX-02-170.0142041030.500.06540.00240.79510.03460.08790.003378775.959419.654319.4
TX-02-18015878.80.500.06860.00260.86300.03010.09160.002788776.763216.456515.7
TX-02-193.522 4955140.210.05820.00180.17200.00610.02130.000660073.11615.31364.0
TX-02-202.521 3105090.390.05180.00170.18610.00730.02580.000827675.91736.31645.3
TX-02-212.351681040.620.07940.00281.52660.05130.13860.00371 18363.994120.683721.2
TX-02-221.825133650.710.08710.00331.51240.05480.12060.00411 36573.393522.273423.5
TX-02-230.751 1386700.590.05410.00200.23550.00890.03150.001037676.82157.32006.1
TX-02-240.856295730.910.05130.00220.16500.00670.02330.0006254100.01555.81484.0
TX-02-250.863061410.460.07030.00221.51580.04850.15550.004393969.493719.693224.2
TX-02-263.184482320.520.06900.00250.49790.02860.05090.002390069.441019.432014.2

新窗口打开| 下载CSV


  

TX-02-272.676935980.860.05980.00190.43880.01400.05290.001459868.53699.83328.8
TX-02-282.052151040.480.06670.00241.21720.04910.13220.004482874.880822.580025.3
TX-02-29027489.60.330.06500.00201.17060.03750.13010.003677466.778717.578820.5
TX-02-301.802861230.430.12300.00356.12280.17310.35870.00942 00050.01 99424.71 97644.7
TX-02-312.3915457.30.370.11240.00354.04700.14690.25940.00811 83956.61 64429.61 48741.3
TX-02-320.9911066.50.600.06950.00271.33100.04950.14030.004092281.585921.584722.4
TX-02-332.0515690.10.580.06650.00290.86480.04700.09380.004183388.963325.657824.3
TX-02-342.652912030.700.06660.00211.09290.03440.11860.003282869.475016.772218.5
TX-02-351544 3301 8920.440.32690.01091.05650.03720.02320.00063 60350.973218.41483.9
TX-02-366.644508911.980.06880.00221.17560.03490.12140.003489470.578916.373819.5
TX-02-371.442741910.700.07740.00251.37300.04420.12860.00351 13164.887718.978020.0
TX-02-382.3613449.10.370.06360.00241.06830.03990.12200.003772875.073819.674221.3
TX-02-393.212 2544340.190.05360.00190.16150.00610.02170.000635449.11525.41393.8
TX-02-4013.92462010.820.07830.00271.40290.04670.13030.00371 16773.189019.779021.0
TX-02-411.143212330.730.08920.00253.06070.09110.24760.00681 40953.91 42322.81 42635.4
TX-02-421.614333950.910.07120.00220.68900.02350.07060.002396263.453214.244014.0
TX-02-434.085023970.790.07380.00221.38320.04280.13500.00361 03760.088218.281620.4
TX-02-447.534 0812 0000.490.06790.00190.21890.00680.02330.000786559.32015.61494.4

误差为1ơ;Pbc代表普通铅;标准校正值的误差为0.90%

新窗口打开| 下载CSV


3.2 全岩地球化学

(1)主量元素。塔下岩体的10个花岗闪长岩样品的地球化学测试数据列于表2。岩体SiO2质量分数为68.12%~71.75%,平均值为69.745%;K2O+Na2O质量分数为6.15%~7.88%,平均值为7.14%,在TAS分类图解20[图5(a)]和K2O-SiO2图解21[图5(b)]上,塔下岩体样品主要落在花岗闪长岩—花岗岩过渡区域;具有高钾钙碱性—钙碱性过渡岩石的特点22,属于钙碱性系列[图5(c)]。塔下岩体样品Al2O3质量分数为14.55%~15.68%,平均值为15.024%;岩石碱铝比A/NK值在0.63~0.75之间,铝过饱和度A/CNK值在0.98~1.39之间,在A/NK-A/CNK图解23[图5(d)]中呈过铝质岩石系列的特点(数据来源于文献[12,24,25,26,27,28,29,30,31,32,33,34])。

表2   塔下花岗闪长岩体主量元素(%)、微量和稀土元素(×10-6)分析结果

Table 2  Analytical results of major elments(%),trace elements and rare earth elements(×10-6)of Taxia

类别名称样品编号及分析结果
TX-01TX-02TX-03TX-04TX-05TX-06TX-07TX-08TX-09TX-10
主量元素/%SiO269.3369.2371.4569.0568.9869.4471.7571.6268.4868.12
TiO20.300.300.310.310.300.300.310.300.300.29
Al2O314.9715.0315.6814.8514.8115.0615.1815.3914.7214.55
TFe2O32.162.222.262.262.222.302.292.252.172.20
MnO0.030.030.030.030.030.030.030.030.030.04
MgO0.800.800.800.820.770.810.820.810.780.74
CaO2.322.130.472.172.411.530.480.592.563.14
Na2O4.424.544.404.184.344.824.374.344.253.76
K2O2.862.752.902.912.393.062.912.882.642.74
P2O50.100.100.100.110.100.100.100.100.100.09
LOI2.852.891.712.923.322.081.651.823.333.93
Total100.14100.02100.1199.6199.6799.5399.89100.1399.3699.60
A/CNK1.031.051.391.061.051.071.351.361.010.98
A/NK1.441.441.511.481.521.341.471.501.491.59
DI82.8283.3688.1082.8181.8386.088.4387.981.5679.2

稀土、微量元素

/ (×10-6

Rb85.583.382.783.379.285.380.481.178.893.6
Ba757740852787576858953836608500
Nb4.64.54.75.14.65.04.74.64.54.9
Sr417402344363445676333308383435
Zr137138155143132151157148132143
La30.427.431.227.726.829.832.729.025.326.9
Ce58.751.659.454.252.357.859.152.948.051.9
Pr6.455.976.745.765.806.186.746.245.415.76
Nd24.322.024.822.121.723.925.823.720.921.9
Sm3.563.743.863.533.493.693.923.633.283.46
Eu0.990.920.980.890.860.950.980.970.850.91
Gd2.862.732.952.592.512.652.842.782.462.68
Tb0.320.320.300.280.270.300.310.300.270.29
Dy1.571.551.601.541.461.451.461.581.451.58
Ho0.260.260.270.240.260.240.240.270.250.27
Er0.720.750.750.720.660.630.700.770.690.76

稀土、微量元素

/(×10-6

Tm0.100.100.100.090.080.080.090.100.090.10
Yb0.590.610.590.530.490.480.530.600.560.61
Lu0.090.090.090.080.070.070.080.090.080.09
Y7.27.27.67.77.27.67.27.47.17.9
Cr40704050304030303030
V43434645433844414238
Cs7.397.617.636.568.015.126.837.897.468.74
Th12.7011.9513.0512.5011.8511.3012.4512.1011.8011.50
U3.843.712.803.723.103.162.662.443.392.85
Ta0.50.40.40.40.40.40.40.40.40.5
Hf4.34.14.54.24.04.04.44.64.04.2
δEu0.9500.8810.8890.9010.8890.9300.8990.9350.9160.915
(Gd/Yb)N4.0003.6934.1264.0334.2274.5564.4223.8243.6253.626
(La/Yb)N36.9632.2237.9337.4939.2344.5344.2634.6732.4131.63

新窗口打开| 下载CSV


(2)微量元素。塔下岩体稀土总量(∑REE)在109.59×10-6~135.49×10-6之间,平均值为123.3×10-6,具有轻稀土富集、重稀土亏损的右倾特征35[图6(a)]。轻稀土(La-Eu)和重稀土(Gd-Yb)元素比值(LREE/HREE)和(La/Yb)N分别在17.37~20.73(平均值为18.8)和31.63~44.53(平均值为37.13)之间,δEu变化范围为0.88~0.95,平均值为0.91,具弱Eu亏损。在微量元素原始地幔标准化蛛网图36中,塔下花岗闪长岩的大阳离子亲石元素Rb、Th、U和K富集,Ba和Sr亏损[图6(b)];高场强元素La、Nd、Zr、Hf、Sm和Y富集,Nb、P、Ti和Yb亏损。

图5

图5   塔下花岗闪长岩的岩性判别图解

Fig.5   Discriminative diagrams of granodiorite samples from Taxia granodiorite

(a)TAS图解(底图据文献[20])(1-橄榄辉长岩;2a-碱性辉长岩;2b-亚碱性辉长岩;3-辉长闪长岩;4-闪长岩;5-花岗闪长岩;6-花岗岩;7-硅英岩;8-二长辉长岩;9-二长闪长岩;10-二长岩;11-石英二长岩;12-正长岩;13-副长石辉长岩;14-副长石二长闪长岩;15-副长石二长正长岩;16-副长正长岩;17-副长深成岩;18-霓方钠岩/磷霞岩/白榴岩;Ir-Irvine 分界线,上方为碱性,下方为亚碱性);(b)K2O-SiO2岩石序列图解(底图文献据[21]);(c)SiO2-AR岩石序列判别图解(底图据文献[22]);(d)A/NK-A/CNK图解(底图据文献[23]),数据来源于文献[12,24,25,26,27,28,29,30,31,32,33,34]


图6

图6   塔下花岗闪长岩的球粒陨石标准化稀土元素分布型式(a)和原始地幔标准化微量元素蛛网图(b)

Fig.6   Chondrite-normalized rare earth element pattern and Primitive mantle-normalized trace element variation diagram in the Taxia granodiorite(Chondrite data from reference[35];Primitive mantle-normalized data from reference[36])

(球粒陨石标准值据文献[35];原始地幔标准值据文献[36])


4 讨论

4.1 成岩年代

测年结果显示,塔下花岗闪长岩44组锆石的206Pb/238U年龄值在1 976~114 Ma之间,所测锆石年龄主要呈现早[(819±20)Ma,n=12]、晚[(142±12)Ma,n=6]2组峰值[图4(c),4(d)]。根据锆石CL图像,第1个峰期年龄[(819±20)Ma]锆石的测点位置在浅色、环带不发育的核部位置,具有继承锆石特征[图7(a)];而处于第2个峰期年龄[(142±12)Ma]的锆石均呈深色,具有很好的柱状晶体,其晶棱清晰,韵律环带结构明显,具有岩浆锆石特征[图7(b)];其他锆石测年值大多集中在630~180 Ma,分布于二者之间,所对应的测试位置也处于锆石的核边结合部位[图7(c)],年龄值随着激光剥蚀圈中浅色核增多而增大。根据上述特征,认为塔下岩浆岩形成于燕山期[(142±12)Ma],岩体中大量存在的元古代年龄[(819±20)Ma]锆石对应为晋宁期岩浆活动的产物,被燕山期岩浆捕获形成具有明显核幔结构的捕获锆石的特点[图7(c)]。这一特征与同处东至地区形成于146.5~144.2 Ma的戴村岩体锆石年龄分布特征相一致[14]。此外,本次所测锆石核部中还存在3颗老年龄(1 487,1 426,1 976 Ma),指示江南古陆西段的东至地区可能存在古元古代—太古宙陆壳基底[14]

图7

图7   塔下岩浆岩锆石分析点位及年龄

Fig.7   Analysis points and ages of zircon from Taxia magmatic rocks

(a)晋宁期岩浆锆石;(b)燕山期岩浆锆石;(c)混合岩浆锆石


前人对江南古陆东部中酸性岩体的成岩年代进行了大量研究[10,37,38,39,40,41,42,43]。统计分析显示(图8),该区岩浆作用可划分为晋宁期(900~780 Ma)和燕山期(160~120 Ma)。燕山期岩浆岩形成时代可进一步划分为3个阶段:154~138 Ma、135~128 Ma和123~120 Ma[44,45,46,47,48]。其中,第一阶段(154~138 Ma)岩浆作用最为强烈,所形成岩体在区内广泛分布,包括里东坑、戴村、东源、逍遥、朱溪、城安、桃岭、瑶里、卧龙谷和黟县等岩体,岩性以花岗闪长岩为主。第二阶段(135~128 Ma)岩浆作用以花岗岩为主,形成岩体包括付岭和牯牛降等岩体,岩性以花岗岩和花岗闪长岩为主,具有与前阶段岩体侵入位置相近组成复式岩体对的特征,且演化程度较高。第三阶段(123~120 Ma)岩浆作用主要发育在南部,岩性以花岗岩为主,呈近圆状分布,以鹅湖岩体为代表。塔下岩体形成于(142±12)Ma,对应于燕山期第一阶段岩浆活动。

图8

图8   江南古陆北缘岩浆岩形成年龄频谱图(数据来源于

Fig.8   Histograms of magmatic intrusions in northern Jiangnan Proterozoic terrane (data from reference

文献[10,37,38,39,40,41,42,43])

[10,37,38,39,40,41,42,43])


4.2 岩石成因

(1)岩石类型。自Ⅰ、S、A、M型花岗岩分类被提出之后[2,49,50],对花岗岩分类的研究得到更多重视,应用地球化学特征判别花岗岩的岩石类型获得广泛共识[51,52,53]。塔下花岗闪长岩体具有较高的Na2O(3.76% ~4.82%)和CaO(0.47%~3.14%)含量,呈钙碱性、弱过铝质岩石特征(图5);在Na2O-K2O图解[图9(a)]上均落在Ⅰ型花岗岩区域,这也得到了Zr-SiO2[图9(b)]、Y-SiO2[图9(c)]和Ce-SiO2[图9(d)]等岩石类型判别图的佐证。同时,塔下岩体的轻稀土富集与Eu元素无显著异常,也与Ⅰ型(壳幔同熔型)花岗岩相似[54]

图9

图9   塔下岩浆岩成因类型判别图解

Fig.9   Discrimination diagrams for genetic type of magmatite in Taxia

(a)Na2O-K2O图解;(b)Zr-Si2O图解;(c)Y-Si2O图解;(d)Ce-Si2O图解

注:图解(a)、(b)、(c)、(d)底图据文献[55];数据来源于文献[12,24,25,26,27,28,29,30,31,32,33,34]


(2)岩浆演化。塔下岩体具有高硅(68.12%~71.75%)、高碱含量的特点,指示岩石具有较高的分异程度。在原始地幔标准化微量元素蛛网图上,样品均亏损元素Sr和Ba,富集元素Rb、Th和U,同时表现出了强烈的轻、重稀土分异特征。岩浆分异指数(DI)、δEu值和Y值可作为估量岩浆分异程度的指标,δEu值越小、DI值越大且Y含量越高,指示岩浆的结晶分异程度就越高[56,57]。塔下花岗闪长岩具有较大δEu值(0.88~0.95)、较低的Y含量(7.1~7.9)和较小的DI值(79.2~88.43),指示了塔下花岗闪长岩在岩浆上升侵位过程中经历了较弱的结晶分异作用。此外,根据野外露头中塔下存在包体、岩浆岩中存在大量老年龄(819~1 940 Ma)的继承性或捕获锆石等证据,显示塔下花岗闪长岩体在上升侵位过程发生了显著的中上地壳混染作用。

(3)岩浆源区。塔下花岗闪长岩稀土元素球粒陨石标准化图解显示有轻稀土富集、重稀土亏损的右倾特征(图6),微量元素中富集大离子亲石元素(Rb、Th、U),Nb、Ta亏损,与地壳源区的岩浆岩相似[58,59]。塔下岩体有较低的Th含量(11.30×10-6~13.05×10-6)和较低的Th/Ce比值(<0.25),其Th/Ce比值与地壳有一定差异[60],Nb/Ta比值(10~14)与地壳接近[61],Nb、Ta含量明显低于地壳中的含量,指示有地幔物质参与的特点。岩浆岩稀土元素性质稳定,在上升过程中受分离结晶影响较小。(Gd/Yb)N值受岩浆源区深度控制,当(Gd/Yb)N值较大(>1.20)时,指示岩浆源于深度较大的石榴子岩相源区,反之岩浆源于深度较小的尖晶石相源区[62,63],塔下地区中酸性侵入岩样品的球粒陨石标准化(Gd/Yb)N值均大于1.2,指示了岩浆具有较深源区。在La/Sm-La图解[图10(a)]和Zr/Sm-Zr图解[图10(b)]上,塔下岩体全岩数据显示其部分熔融的演化趋势,指示塔下花岗闪长岩体初始岩浆主要是由部分熔融产生。以上特征显示,塔下岩体的初始岩浆源于有地幔物质加入的石榴子石相下地壳源区的部分熔融。

图10

图10   塔下花岗闪长岩演化判别图

Fig.10   Discrimination diagrams for evolution of the Taxia granodiorite

(a)La/Sm-La图解;(b)Zr/Sm-Zr图解(底图据文献[64])


(4)成岩背景。前人通过研究江南古陆地区燕山期岩浆作用,取得了燕山期侵入岩浆作用处于古太平洋板块对欧亚大陆的俯冲岛弧背景的共识[13,44,45,47,48]。本次工作显示,塔下花岗闪长岩形成于142 Ma,与江南古陆地区燕山期第一阶段的中酸性岩浆作用相吻合[45]。地球化学特征显示,塔下花岗闪长岩为Ⅰ型花岗岩,在Rb-Y+Nb、Rb-Yb-Ta、Ta-Yb和Nb-Y花岗岩构造背景判别图解(图11)中,塔下花岗闪长岩均落入火山弧花岗岩区域,也指示塔下岩体形成于岛弧环境。燕山晚期,主导江南古陆岩浆岩活动动力学背景由陆陆碰撞转化为洋壳对陆壳的俯冲碰撞,该期侵入岩形成的构造背景具有碰撞和火山弧花岗岩特征(图11)。

图11

图11   塔下花岗闪长岩构造背景判别图

Fig.11   Tectonic discrimination diagrams of Taxia granodiorite

(a)Rb-Y+Nb图解;(b)Rb-Yb+Ta图解;(c)Ta-Yb图解;(d)Nb-Y图解(底图据文献[65])syn-COLG-同碰撞花岗岩;WPG-板内花岗岩;VAG-火山弧花岗岩;ORG-洋脊花岗岩;数据来源于文献[10,37,38,39,40,41,42,43]


5 结论

(1)塔下花岗闪长岩的成岩年龄为142 Ma,对应于早白垩世。

(2)塔下花岗闪长岩为弱过铝质、钙碱性的Ⅰ型花岗岩。

(3)塔下岩体是在古太平洋西向俯冲岛弧背景下,石榴子石相下地壳源区在有深部地幔物质加入的情况下发生部分熔融形成初始岩浆,随着构造薄弱位置上升侵位,并与围岩发生强烈同化混染作用的产物。

参考文献

Whalen J B Currie K L Chappell B W .

A-type granites:Geochemical characteristics,discrimination and petrogenesis

[J].Contributions to Mineralogy and Petrology1987954):407-419.

Chappell B W Stephens W E .

Origin of infracrustal (I-type) granitoid magmas

[J].Transactions of the Royal Society of Edinburgh Earth Sciences19887971-86.

[本文引用: 2]

吴福元刘小驰纪伟强 .

高分异花岗岩的识别与研究

[J].中国科学(地球科学),2017477):745-765.

[本文引用: 1]

Wu Fuyuan Liu Xiaochi Ji Weiqiang et al .

Highly fractionated granites:Recognition and research

[J].Science China Earth Science2017477):745-765.

[本文引用: 1]

Loucks R R .

Distinctive composition of copper-ore-forming arc magmas

[J].Australian Journal of Earth Sciences2014611):5-16.

[本文引用: 1]

Cooke D R Hollings P Walshe J L .

Giant porphyry deposits:Characteristics,distribution,and tectonic controls

[J].Economic Geology20051005):801-818.

[本文引用: 1]

肖庆辉邢作云张昱 .

当代花岗岩研究的几个重要前言

[J].地学前缘,2009103):221-229.

[本文引用: 1]

Xiao Qinghui Xing Zuoyun Zhang Yu et al .

The maior frontiers of the recent studies of granite

[J].Earth Science Frontiers2009103):221-229.

[本文引用: 1]

Mao J W Zhou Y M Liu H et al .

Molybdenite Re/Os dating,zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt),China:Implications for petrogenesis,mineralization and geodynamic setting

[J].Lithos2017286/28735-52.

[本文引用: 1]

Wu F Y Ji W Q Sun D H et al .

Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province

[J].Lithos20121505):6-25.

[本文引用: 1]

Xie J C Fang D Xia D M et al .

Petrogenesis and tectonic implications of late Mesozoic granitoids in southern Anhui Province,southeastern China

[J].International Geology Review2017591):1-23.

[本文引用: 1]

侯明金 .

江南古陆(安徽部分)燕山晚期岩浆活动与深部过程

[D].合肥合肥工业大学2005.

[本文引用: 5]

Hou Mingjin .

The Magmatic Activities and Its Depth Process of the Later Yanshanian Granitoids in the Jiangnan Uplift in the Area of Anhui Province

[D].HefeiHefei University of Technology2005.

[本文引用: 5]

吴荣新郑永飞吴元保 .

皖南石耳山新元古代花岗岩锆石U-Pb定年以及元素和氧同位素地球化学研究

[J].高校地质学报,2005113):364-382.

[本文引用: 1]

Wu Rongxin Zheng Yongfei Wu Yuanbao .

Ziron U-Pb age element and oxgyen isotope geochemisty of Neoproterozoic granites at Shiershan in south Anhui Province

[J].Geological Journal of China Universities2005113):364-382.

[本文引用: 1]

薛怀民马芳宋永勤 .

江南造山带东段新元古代花岗岩组合的年代学和地球化学:对杨子与华夏地块拼合时间与过程的约束

[J].岩石学报,20102611):3215-3244.

[本文引用: 4]

Xue Huaimin Ma Fang Song Yongqin et al .

Geochronology and geochemisty of the Neoproterozoic granitoid association from eastern segment of the Jiangnan orogen,China:Constraints on the timing and process of am algamation between the Yangtze and Cathaysia blocks

[J].Acta Petrologica Sinica20102611):3215-3244.

[本文引用: 4]

周涛发袁锋侯明金 .

江南古陆东段皖赣相邻区燕山期花岗岩类的成因及形成的地球动力学背景

[J].矿物岩石,2004243):65-71.

[本文引用: 2]

Zhou Taofa Yuan Feng Hou Mingjin et al .

Genesis and geodynamic background of Yanshanian granitoids in the eastern Jiangnan Uplift in the adjecent area of Anhui and Jiangxi Provinces,China

[J].Journal of Mineralogy and Petrology2004243):65-71.

[本文引用: 2]

徐晓春刘雪张赞赞 .

安徽东至兆吉口铅锌矿区岩浆岩锆石U-Pb年龄及其地质意义

[J].地质科学,2014492):431-455.

[本文引用: 3]

Xu Xiaochun Liu Xue Zhang Zanzan et al .

Zircon U-Pb ages of granodiorites in Zhaojikou lead-zinc deposits of Dongzhi County,Anhui Province and their geological significance

[J].Chinese Journal of Geology2014492):431-455.

[本文引用: 3]

刘劲松黄凯军余潜 .

安徽省东至县土地坑—塔下一带铜铅多金属矿普查野外工作总结报告

[R].安庆安徽省地质矿产勘查局311地质队2015.

[本文引用: 3]

Liu Jinsong Huang Kaijun Yu Qian et al.Exploration report o of Tudikeng-Taxia copper-lead polymetallic ore deposit of Dongzhi County ,

Anhui Province

[R].AnqingNo.311 Geological Party,Bureau of Geology and Mineral Resources Exploration of Anhui Province2015.

[本文引用: 3]

Andersen T Griffin W L .

Lu-Hf and U-Pb isotope systematics of zircons from the Storgangen intrusion,Rogaland intrusive complex,SW Norway:Implications for the composition and evolution of Precambrian lower crust in the Baltic Shield

[J].Lithos2004733/4):271-288.

[本文引用: 1]

靳新娣朱和平 .

岩石样品中43种元素的高分辨等离子质谱测定

[J].分析化学,2000285):563-567.

[本文引用: 1]

Jin Xindi Zhu Heping .

Determination of 43 trace elements in rock samples by double focusing high resolution inductively coupled plasma-mass spectrometry

[J].Chinese Journal of Analytical Chemistry2000285):563-567.

[本文引用: 1]

吴元保郑永飞 .

锆石成因矿物学研究及其对U-Pb年龄解释的制约

[J].科学通报,20044916):1589-1604.

[本文引用: 1]

Wu Yuanbao Zheng Yongfei .

Study on the mineralogy with genesis of zircon and its constraints on the interpretation of U-Pb age

[J].Chinese Science Bulletin20044916):1589-1604.

[本文引用: 1]

李长民 .

锆石成因矿物学与锆石微区定年综述

[J].地质调查与研究,2009333):161-174.

[本文引用: 1]

Li Changmin .

A review on the minerageny and situ microanalytical dating techniques of zircons

[J].Geological Survey and Research2009333):161-174.

[本文引用: 1]

Middlmost E A K .

Naming materials in the magma/igneous rock system

[J].Earth Science Review1994373/4):215-224.

[本文引用: 2]

Ewart A .

The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks with special reference to the andesitic-basaltic compositional range

[M]//Thorp RS Andesites Chichestes:Wiley198225-95.

[本文引用: 2]

Wright J B .

A simple alkalinity ratio and its application to question of non-orogenic granite genesis

[J].Geological Magazine19691064):370-384.

[本文引用: 2]

Maniar P D Piccoli P M .

Tectonic discrimination of granitoids

[J].Geological Society of America Bulletin19891015):615-643.

[本文引用: 2]

白玉岭王宗起王涛 .

赣东北地区瑶里花岗岩年代学、地球化学及其岩石成因

[J].岩石矿物学杂志,2015341):35-50.

[本文引用: 3]

Bai Yuling Wang Zongqi Wang Tao et al .

LA-ICP-MS zircon U-Pb age,geochemistry and petrogenesis of the Yaoli pluton in northeastern Jiangxi Province

[J].Acta Petrologica et Mineralogica2015341):35-50.

[本文引用: 3]

赵鹏姜耀辉廖世勇 .

赣东北鹅湖岩体SHRIMP锆石U-Pd年龄、Sr-Nd-Hf同位素地球化学与岩石成因

[J].高校地质学报,2010162):218-225.

[本文引用: 3]

Zhao Peng Jiang Yaohui Liao Shiyong et al .

SHRIMP zircon U-Pb age,Sr-Nd-Hf isotopic geochemistry and petrogenesis of the Ehu pluton in northeastern Jiangxi Province

[J].Geological Journal of China Universities2010162):218-225.

[本文引用: 3]

郭博然刘树文杨朋涛 .

江西卧龙谷花岗岩和铜厂花岗闪长斑岩的地球化学特征及成因——对赣东北地区铜矿成矿地质背景的制约

[J].地质通报,201327):1035-1046.

[本文引用: 3]

Guo Boran Liu Shuwen Yang Pengtao et al .

Petrology,geochemistry and petrogenesis of Wolonggu granites and Tongchang granodioritic porphyries:Constraints on copper metallogenic geological settings in northeastern Jiangxi Province

[J].Geological Bulletin of China2013327):1035-1046.

[本文引用: 3]

谢建成陈思荣伟 .

安徽牯牛降A型花岗岩的年代学、地球化学和构造意义

[J].岩石学报,20122812):4007-4020.

[本文引用: 3]

Xie Jiancheng Chen Si Rong Wei et al .

Geochronology,geochemistry and tectonic significance of Guniujiang A-type granite in Anhui Province

[J].Acta Petrologica Sinica20122812):4007-4020.

[本文引用: 3]

陈国华万浩章舒良树 .

江西景德镇朱溪铜钨多金属矿床地质特征与控矿条件分析

[J].岩石学报,20122812):3901-3914.

[本文引用: 3]

Chen Guohua Wan Haozhang Shu Liangshu et al .

An analysis on ore-controlling conditions and geological features of the Cu-W polymetallic ore deposit in the Zhuxi area of Jingdezhen,Jiangxi Province

[J].Acta Petrologica Sinica20122812):3901-3914.

[本文引用: 3]

陈子微余心起周翔 .

皖南休宁县里东坑似斑状花岗闪长岩成岩成矿特征分析

[J].中国地质,2013406):1762-1776.

[本文引用: 3]

Chen Ziwei Yu Xinqi Zhou Xiang et al .

Rock-forming and ore-forming characteristics of the Lidongkeng porphyritic granodiorite in Xiuning County,south Anhui Province

[J].Geology in China2013406):1762-1776.

[本文引用: 3]

张虹戴圣潜管运财 .

皖南绩溪伏岭岩体岩石地球化学特征

[J].中国地质,2005323):411-416.

[本文引用: 3]

Zhang Hong Dai Shengqian Guan Yuncai et al .

Petrology and geochemistry of the Fuling mass in Jixi,southern Anhui

[J].Geology in China2005323):411-416.

[本文引用: 3]

王德恩周翔余心起 .

皖南祁门地区东源钨钼矿区花岗闪长斑岩SHRIMP锆石U-Pb年龄和Hf同位素特征

[J].地质通报,20113010):1514-1529.

[本文引用: 3]

Wang De’en Zhou Xiang Yu Xinqi et al .

SHRIMP zircon U-Pb dating and characteristics of Hf isotopes of the granodiorite porphyries in the Dongyuan W-Mo ore district,Qimen area,southern Anhui

[J].Geological Bulletin of China20113010):1514-1529.

[本文引用: 3]

陈健 .

安徽东至杨老尖—龙门尖铅锌矿床地质地球化学特征研究

[D].南昌东华理工大学2012.

[本文引用: 3]

Chen Jian .

Studies on geological and geochemical features of Pb-Zn ore deposit in Yanglaojian-Longmenjian,Dongzhi,Anhui Province

[D].NanchangEast China Institute of Technology2012.

[本文引用: 3]

何苗 .

安徽东至兆吉口地区岩浆岩地质地球化学特征及成因

[D].合肥合肥工业大学2013.

[本文引用: 3]

He Miao .

Geological-Geochemical Characteristics And Genesis of Magmatic Rocks In Zhaojikou,Dongzhi,Anhui Province

[D].HefeiHefei University of Technology2013.

[本文引用: 3]

周洁葛伟亚姜耀辉 .

江南造山带东段桃岭岩体的地球化学特征及其成因

[J].中国地质,2014413):838-850.

[本文引用: 3]

Zhou Jie Ge Weiya Jiang Yaohui .

Geochemical and origin of Taoling pluton,eastern Jiangnan orogen

[J].Geology in China2014413):838-850.

[本文引用: 3]

Boynton W V .

Cosmochemistry of the rare earth elements:meteorite studies

[J].Developments in Geochemistry,1984,2(1):64-114.

[本文引用: 3]

Galer S J .

Limits on chemical and convective isolation in the earth’s interior

[J].Chemical Geology1989754):257-290.

[本文引用: 3]

陈芳王登红杜建国 .

安徽绩溪伏岭花岗岩LA-ICP-MS锆石U-Pb年龄的精确测定及其地质意义

[J].岩矿测试,2013326):970-977.

[本文引用: 4]

Chen Fang Wang Denghong Du Jianguo et al .

New dating of the Fuling granite body with LA-ICP-MS Lircon U-Pb in Jixi,Anhui Province and their geological significance

[J].Rock and Mineral Analysis2013326):970-977.

[本文引用: 4]

周翔余心起杨赫鸣 .

皖南绩溪县靠背尖高Ba-Sr花岗闪长斑岩年代学及其成因

[J].岩石学报,20122810):3403-3417.

[本文引用: 4]

Zhou Xiang Yu Xinqi Yang Heming et al .

Petrogenesis and geochronology of the high Ba-Sr Kaobeijian granodiorite porphyry,Jixi County,south Anhui Province

[J].Acta Petrologica Sinica20122810):3403-3417.

[本文引用: 4]

汪雅菲 .

安徽城安岩体地球化学特征及成因研究

[D].合肥合肥工业大学2015.

[本文引用: 4]

Wang Yafei .

The Geochemical Characteristics and Diagenesis Research of Cheng’an Composite Pluton,Anhui Province

[D].HefeiHefei University of Technology2015.

[本文引用: 4]

秦燕王登红吴礼彬 .

安徽东源钨矿含矿斑岩中的锆石SHRIMP U-Pb年龄及其地质意义

[J].地质学报,2010844):479-484.

[本文引用: 4]

Qin Yan Wang Denghong Wu Libin et al .

Zircon SHRIMP U-Pb dating of the mineralized porphyry in the Dongyuan W deposit in Anhui Province and its geological significance

[J].Acta Petrologica Sinica2010844):479-484.

[本文引用: 4]

万浩章刘战庆刘善宝 .

赣东北朱溪铜钨矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义

[J].岩矿测试,2015344):494-502.

[本文引用: 4]

Wan Haozhang Liu Zhanqing Liu Shanbao et al .

LA-ICP-MS zircon U-Pb dating of granodioritic porphyry located Zhuxi copper-tungsten mine in northeast Jiangxi and its geological significance

[J].Rock and Mineral Analysis2015344):494-502.

[本文引用: 4]

Jiang Y H Zhao P Zhou Q et al .

Petrogenesis and tectonic implications of Early Cretaceous S- and A-type granites in the northwest of the Gan-Hang rift,SE China

[J].Lithos20111211/2/3/4):55-73.

[本文引用: 4]

李鹏举余心起邱骏挺 .

赣东北大鄣山花岗岩的地质特征、形成时代及其旅游地学意义

[J].成都理工大学学报(自然科学版),2015425):608-616.

[本文引用: 4]

Li Pengju Yu Xinqi Qiu Junting et al .

Chronologl,geological characteristics and landscape geological significance of granites from Dazhang Mountain,Jiangxi China

[J].Journal of Chengdu University of Technology(Science & Technology Edition )2015425):608-616.

[本文引用: 4]

董树文马立成刘刚 .

论长江中下游成矿动力学

[J].地质学报,2011855):612-625.

[本文引用: 2]

Dong Shuwen Ma Licheng Liu Gang et al .

On dynamics of the metallogenic belt of Middle-Lower Reaches of Yangtze River,Eastern China

[J].Acta Geologica Sinica2011855):612-625.

[本文引用: 2]

周涛发范裕袁峰 .

长江中下游成矿带火山岩盆地的成岩成矿作用

[J].地质学报,2011855):712-730.

[本文引用: 3]

Zhou Taofa Fan Yu Yuan Feng et al .

Petrogensis and metallogeny study of the volcanic basins in the Middle and Lower Yangtze metallogenic belt

[J].Acta Petrologica Sinica2011855):712-730.

[本文引用: 3]

刘园园马昌前吕昭英 .

长江中下游贵池矿集区燕山期岩浆作用及其地质意义:年代学、地球化学及Sr-Nd-Hf同位素证据

[J].岩石学报,20122810):3287-3305.

[本文引用: 1]

Liu Yuanyuan Ma Changqian Zhaoying et al .

Zircon U-Pb age,element and Sr-Nd-Hf isotope geochemistry of Late Mesozoic magmatism from the Guichi metallogenic district in the Middle and Lower Reaches of Yangtze River Region

[J].Acta Petrologica Sinica20122810):3287-3305.

[本文引用: 1]

刘燊冯彩霞冯光英 .

华北克拉通基性岩墙成因模式:来自锆石U-Pb年龄、地球化学和Sr-Nd-Pb同位素证据

[J].岩石学报,2017336):1667-1685.

[本文引用: 2]

Liu Shen Feng Caixia Feng Guangying et al .

Zircon U-Pb age,geochemical and Sr-Nd-Pb isotopic data:Constraints on the genetic model of the mafic dykes from the North China Craton

[J].Acta Petrollgica Sinica2017336):1667-1685.

[本文引用: 2]

刘燊胡瑞宗赵军红 .

鲁西晚中生代基性脉岩的成因和源区性质:岩石学和地球化学

[J].地质论评,2004506):577-586.

[本文引用: 2]

Liu Shen Hu Ruizong Zhao Junhong et al .

Genesis and source characteristics of the mafic-ultramafic dikes in west Shandong Province:Evidence from petrology and geochemistry

[J].Geological Review2004506):577-586.

[本文引用: 2]

Chappell B W White A J R .

Two contrasting granite types

[J].Pacific Geology197482):173-174.

[本文引用: 1]

Bonin B .

A-type granites and related rocks:Evolution of aconcept,problems and prospects

[J].Lithos2007971/2):1-29.

[本文引用: 1]

Chappell B W White A J R .

I- and S-type granites in the Lachlan Fold Belt

[J].Transactions of the Royal Society of Edinburgh:Earth Sciences1992831/2):1-26.

[本文引用: 1]

Landenberger B Collins W J .

Derivation of A-type granites from a dehydrated charnockitic lower crust:Evidence from the Chaelundi complex,Eastern Australia

[J].Journal of Petrology1996371):145-170.

[本文引用: 1]

Clemens J D .

S-type granitic magmas-petrogenetic issues,models and evidence

[J].Earth-Science Reviews2003611/2):1-18.

[本文引用: 1]

邱家骧林景仟 .

岩石化学

[M].北京地质出版社1991.

[本文引用: 1]

Qiu Jiaxiang Lin Jingqian .

Petrochemistry

[M].BeijingGeological Publishing House1991.

[本文引用: 1]

Collins W J Beams S D White A J R et al .

Nature and origin of A-type granites with particular reference to southeastern Australia

[J].Contributions to Mineralogy and Petrology1982802):189-200.

[本文引用: 1]

Said N Kerrich R .

Geochemistry of coexisting depleted and enriched Paringa basalts in the 2.7 Ga Kalgoorlie Terrane,Yilgarn Craton,western Australia:Evidence for a heterogeneous mantle plume event

[J].Precambrian Research20091743/4):287-309.

[本文引用: 1]

Cheng Y B Mao J W .

Age and geochemistry of granites in Gejiu area,Yunnan Province,SW China:Constraints on their petrogenesis and tectonic setting

[J].Lithos20101203):258-276.

[本文引用: 1]

Sylvester P J Campbell I H Bowyer D A .

Niobium/uranium evidence for early formation of the continental crust

[J].Science19972755299):521-523.

[本文引用: 1]

Konishi K Kawai K Geller R J et al .

MORB in the lowermost mantle beneath the western Pacific:Evidence from waveform inversion

[J].Earth and Planetary Science Letters20092783):219-225.

[本文引用: 1]

Kerrich R Wyman A P D Hollings P .

Trace element systematics of Mg,to Fe-tholeiitic basalt suites of the superior province:Implications for Archean mantle reservoirs and greenstone belt genesis

[J].Lithos1999461):163-187.

[本文引用: 1]

Taylor S R McLennan S M .

The Continental Crust:Its Composition and Evolution

[M].OxfordBlackwell1985.

[本文引用: 1]

Henderson P Wood R J .

Reaction relationship of chrome-spinel in igneous rocks-further evidence from the layered intrusions of Rhum and Mull,Inner Hebrides,Scotland

[J].Contributions to Mineralogy and Petrology1982783):225-229.

[本文引用: 1]

Mckenzie D O’Nions K .

Partial melt distributions from inversion of rare earth element concentrations

[J].Journal of Petrology1991326):1021-1091.

[本文引用: 1]

Treuil M Varet J .

Criteres volcanologiques et geochimique de la genese et de la differenciation des magmas basaltique:Example de l’Afar

[J].Bulletin of Geological Society of France1973157):401-644.

[本文引用: 1]

Pearce J A Harris N B W Tindle A G .

Trace element discrimination diagrams for the tectonic interpretation of granitic rocks

[J].Journal of Prtrology1984254):956-983.

[本文引用: 1]

/