[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Study on the Influence of Detonation Mode on Rock Mass Damage Law in Water Hole Charge
Received date: 2024-06-13
Revised date: 2024-09-11
Online published: 2024-12-20
This study addresses the issue of suboptimal blasting efficacy in water hole blasting within open-pit mines by investigating the impact of detonation modes on rock mass damage.Utilizing a water interval charge configuration at the bottom of the borehole,a numerical simulation model was developed to analyze how variations in the initiation point’s location and initiation height affect the meso-damage,stress variations,and energy transfer characteristics of the rock mass.The employed image processing technique facilitates the binarization of rock mass damage images,enabling an analysis of the distribution characteristics of rock mass damage and fragmentation post-blasting.The effectiveness of the blasting process was assessed by incorporating a block evaluation index in conjunction with field testing.The findings indicate that variations in the detonation point position influence the energy distribution and stress propagation post-explosion,resulting in differential rock mass damage.Notably,during reverse detonation,the rock at the orifice experiences uniform fragmentation,which is advantageous for subsequent excavation activities.The presence of a water interval at the bottom of the hole extends the duration of energy and stress exerted on the hole’s base.Consequently,the damage area of the rock mass under reverse initiation increases by 19.76% compared to forward initiation and by 5.78% compared to central initiation.When the water interval at the bottom of the hole measures 0.5 meters,the initiation height is set at twice the interval length from the water interval,resulting in a distance of 1 meter.Under these conditions,the rock mass damage increases by 2.3%,while explosive unit consumption decreases by 3%~4%.The bulk size,block unevenness coefficient,and bulk rate are significantly reduced,resulting in enhanced blasting efficiency and improved blasting outcomes.This research offers valuable insights for optimizing charge structure and adjusting blasting parameters in engineering applications.
Runze GUO , Zhenyang XU , Hai ZHANG , Wantong LIU , Qilong ZHANG . Study on the Influence of Detonation Mode on Rock Mass Damage Law in Water Hole Charge[J]. Gold Science and Technology, 2024 , 32(6) : 1090 -1106 . DOI: 10.11872/j.issn.1005-2518.2024.06.176
http://www.goldsci.ac.cn/article/2024/1005-2518/1005-2518-2024-32-6-1090.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
范勇,郭一鸣,冷振东,等,2024.交错起爆下爆炸应力波的碰撞机制与破岩效果[J].爆炸与冲击,44(6):92-104.
|
范勇,孙金山,贾永胜,等,2023.高地应力硐室光面爆破孔间应力相互作用与成缝机制[J].岩石力学与工程学报,42(6):1352-1365.
|
费鸿禄,纪海楠,山杰,2023.露天台阶水介质间隔装药结构优选及对比试验研究[J].黄金科学技术,31(6):930-943.
|
高启栋,靳军,王亚琼,等,2021.孔内起爆位置对爆破振动场分布的影响作用规律[J].爆炸与冲击,41(10):135-149.
|
高启栋,靳军,王亚琼,等,2022.隧道掏槽爆破中起爆点位置对爆炸能量传输的影响作用及其比选研究[J].中国公路学报,35(5):140-152.
|
高启栋,卢文波,冷振东,等,2020.岩石爆破中孔内起爆位置对爆炸能量传输的调控作用研究[J].岩土工程学报,42(11):2050-2058.
|
高启栋,卢文波,杨招伟,等,2019.垂直孔爆破诱发地震波的成分构成及演化规律[J].岩石力学与工程学报,38(1):18-27.
|
胡少斌,王恩元,陈鹏,等,2012.起爆位置对煤岩体深孔爆破的影响[J].煤矿安全,43(2):167-171.
|
金鑫,高佳明,苏宏伟,等,2023.露天矿深孔台阶爆破间隔装药爆破试验研究[J].爆破,40(2):42-47.
|
康永全,薛里,孙崔源,等,2020.间隔不耦合装药结构形式及特点分析[J].工程爆破,26(5):62-67.
|
冷振东,范勇,卢文波,等,2019.孔内双点起爆条件下的爆炸能量传输与破岩效果分析[J].岩石力学与工程学报,38(12):2451-2462.
|
李洪伟,雷战,刘伟,等,2019.起爆方式对岩石柱状装药爆破作用的影响[J].工程爆破,25(5):28-34.
|
李萍丰,王秀龙,闫小兵,等,2024.柱状药包侧向爆破下抵抗线对岩石破碎特性的影响研究[J].岩土力学,45(5):1388-1396.
|
刘万通,徐振洋,张久洋,等,2023.孔底间隔介质对岩体损伤规律研究[J].有色金属工程,13 (10):82-94.
|
刘彦,黄风雷,吴艳青,2019.爆炸物理学[M].北京:北京理工大学出版社.
|
骆浩浩,杨仁树,马鑫民,等,2023.石禄铁矿扇形中深孔爆破块度分布特征研究[J].采矿与安全工程学报,40(2):371-378.
|
秦健飞,秦如霞,2016.水介质换能爆破技术[J].采矿技术,16(6):103-105.
|
秦健飞,秦如霞,2020.水介质换能爆破破岩机理试验验证研究[J].采矿技术,20(6):140-144.
|
杨仁树,赵勇,方士正,等,2023.起爆方式对间隔装药应力场分布及裂纹扩展的影响[J].工程科学学报,45(5):714-727.
|
张世豪,韩晶,王华,等,2014.混凝土中多点同步爆炸能量聚集效应分析[J].爆破,31(1):19-24,81.
|
郑监,2016.浅水中爆炸水射流的形成机理研究[D].长沙:国防科学技术大学.
|
/
〈 |
|
〉 |