Study on the Influence of Detonation Mode on Rock Mass Damage Law in Water Hole Charge
Received date: 2024-06-13
Revised date: 2024-09-11
Online published: 2024-12-20
This study addresses the issue of suboptimal blasting efficacy in water hole blasting within open-pit mines by investigating the impact of detonation modes on rock mass damage.Utilizing a water interval charge configuration at the bottom of the borehole,a numerical simulation model was developed to analyze how variations in the initiation point’s location and initiation height affect the meso-damage,stress variations,and energy transfer characteristics of the rock mass.The employed image processing technique facilitates the binarization of rock mass damage images,enabling an analysis of the distribution characteristics of rock mass damage and fragmentation post-blasting.The effectiveness of the blasting process was assessed by incorporating a block evaluation index in conjunction with field testing.The findings indicate that variations in the detonation point position influence the energy distribution and stress propagation post-explosion,resulting in differential rock mass damage.Notably,during reverse detonation,the rock at the orifice experiences uniform fragmentation,which is advantageous for subsequent excavation activities.The presence of a water interval at the bottom of the hole extends the duration of energy and stress exerted on the hole’s base.Consequently,the damage area of the rock mass under reverse initiation increases by 19.76% compared to forward initiation and by 5.78% compared to central initiation.When the water interval at the bottom of the hole measures 0.5 meters,the initiation height is set at twice the interval length from the water interval,resulting in a distance of 1 meter.Under these conditions,the rock mass damage increases by 2.3%,while explosive unit consumption decreases by 3%~4%.The bulk size,block unevenness coefficient,and bulk rate are significantly reduced,resulting in enhanced blasting efficiency and improved blasting outcomes.This research offers valuable insights for optimizing charge structure and adjusting blasting parameters in engineering applications.
Runze GUO , Zhenyang XU , Hai ZHANG , Wantong LIU , Qilong ZHANG . Study on the Influence of Detonation Mode on Rock Mass Damage Law in Water Hole Charge[J]. Gold Science and Technology, 2024 , 32(6) : 1090 -1106 . DOI: 10.11872/j.issn.1005-2518.2024.06.176
Ai H A, Ahrens T J,2006.Simulation of dynamic response of granite:A numerical approach of shock-induced damage beneath impact craters[J].International Journal of Impact Engineering,33(1):1-12. | |
Baranowski P, Kucewicz M, Gieleta R,et al,2020.Fracture and fragmentation of dolomite rock using the JH-2 constitutive model:Parameter determination,experiments and simulations[J].International Journal of Impact Engineering,140(6):103543-103543. | |
Dehghan Banadaki M M, Mohanty B,2012.Numerical simulation of stress wave induced fractures in rock[J].International Journal of Impact Engineering,40/41:16-25. | |
Fan Yong, Guo Yiming, Leng Zhendong,et al,2024.Collision mechanism and rock breaking effect of the stress wave induced by staggered initiation blasting[J].Explosion and Shock Waves,44(6):92-104. | |
Fan Yong, Sun Jinshan, Jia Yongsheng,et al,2023.Stress interaction and crack penetration mechanism between smooth blasting holes for tunnel excavation under high in-situ stress[J].Chinese Journal of Rock Mechanics and Engineering,42(6):1352-1365. | |
Fei Honglu, Ji Hainan, Shan Jie,2023.Optimization and comparative experimental study of charge structure of water medium interval on open-air step[J].Gold Science and Technology,31(6):930-943. | |
Gao Qidong, Jin Jun, Wang Yaqiong,et al,2021.Acting law of in-hole initiation position on distribution of blast vibration field[J].Explosion and Shock Waves,41(10):135-149. | |
Gao Qidong, Jin Jun, Wang Yaqiong,et al,2022.Study on influence law of initiation position on transmission of explosion energy and its comparison and selection in tunnel cutting blasting[J].China Journal of Highway and Transport,35(5):140-152. | |
Gao Qidong, Lu Wenbo, Leng Zhendong,et al,2020.Regulating effect of detonator location in blast-holes on transmission of explosion energy in rock blasting[J].Chinese Journal of Geotechnical Engineering,42(11):2050-2058. | |
Gao Qidong, Lu Wenbo, Yang Zhaowei,et al,2019.Components and evolution laws of seismic waves induced by vertical-hole blasting[J].Chinese Journal of Rock Mechanics and Engineering,38(1):18-27. | |
Gharehdash S, Barzegar M, Palymskiy I B,et al,2020.Blast induced fracture modelling using smoothed particle hydrodynamics[J].International Journal of Impact Engineering,135(1):103235. | |
Hu Shaobin, Wang Enyuan, Chen Peng,et al,2012.The influence research of initiating position on deep hole blasting among coal and rock masse[J].Coal Mine Safety,43(2):167-171. | |
Jin Xin, Gao Jiaming, Su Hongwei,et al,2023.Experimental study on interval charging blasting of deep hole bench blasting in open pit mine[J].Blasting,40(2):42-47. | |
Kang Yongquan, Xue Li, Sun Cuiyuan,et al,2020.Structural form and characteristic analysis of charge structure with deck decoupling[J].Engineering Blasting,26(5):62-67. | |
Leng Z D, Sun J S, Lu W B,et al,2021.Mechanism of the in-hole detonation wave interactions in dual initiation with electronic detonators in bench blasting operation[J].Computers and Geotechnics,129:103873. | |
Leng Zhendong, Fan Yong, Lu Wenbo,et al,2019.Explosion energy transmission and rock-breaking effect of in-hole dual initiation[J].Chinese Journal of Rock Mechanics and Engineering,38(12):2451-2462. | |
Li Hongwei, Lei Zhan, Liu Wei,et al,2019.Influence of detonation mode on blasting effect of rock columnar charge[J].Engineering Blasting,25(5):28-34. | |
Li Pingfeng, Wang Xiulong, Yan Xiaobing,et al,2024.Effects of burden on rock crushing characteristics under lateral detonation of cylindrical charges[J].Rock and Soil Mechanics,45(5):1388-1396. | |
Liu L, Chen M, Lu W B,et al,2015.Effect of the location of the detonation initiation point for bench blasting[J].Shock and Vibration,2015:907310. | |
Liu Wantong, Xu Zhenyang, Zhang Jiuyang,et al,2023.The damage law of rock mass by hole bottom spacer mediun[J].Nonferrous Metals Engineering,13 (10):82-94. | |
Liu Yan, Huang Fenglei, Wu Yanqing,2019.Explosion Physics[M].Beijing:Beijing Institute of Technology Press. | |
Luo Haohao, Yang Renshu, Ma Xinmin,et al,2023.Study on the distribution characteristics of deep hole blasting in the fan-shaped hole of Shilu iron mine[J].Journal of Mining and Safety Engineering,40(2):371-378. | |
Onederra I A, Furtney J K, Sellers E,et al,2013.Modelling blast induced damage from a fully coupled explosive charge[J].International Journal of Rock Mechanics and Mining Sciences,58:73-84. | |
Parra H, Onederra I, Michaux S,et al,2015.A study of the impact of blast induced conditioning on leaching performance[J].Minerals Engineering,74:1-12. | |
Pu C J, Yang X, Zhao H,et al,2021.Numerical investigation on crack propagation and coalescence induced by dual-borehole blasting[J].International Journal of Impact Engineering,157:103983. | |
Qin Jianfei, Qin Ruxia,2016.Water medium energy conversion blasting technology[J].Mining Technology,16(6):103-105. | |
Qin Jianfei, Qin Ruxia,2020.Experimental verification study on rock breaking mechanism of water medium energy conversion blasting[J].Mining Technology,20(6):140-144. | |
Singh S P,1996.Mechanism of tracer blasting[J].Geotechnical and Geological Engineering,14(1):41-50. | |
Urtiew P A, Hayes B,1991.Parametric study of the dynamic JWL-EOS for detonation products[J].Combustion,Explosion,and Shock Waves,27(4):505-514. | |
Yang Renshu, Zhao Yong, Fang Shizheng,et al,2023.Effect of the detonation method on the stress field distribution and crack propagation of spacer charge blasting[J].Chinese Journal of Engineering,45(5):714-727. | |
Zhang Shihao, Han Jing, Wang Hua,et al,2014.Energy gathering effect of multi-point simultaneous explosion in concrete[J].Blasting,31(1):19-24,81. | |
Zheng Jian,2016.Study on the Formation Mechanism of Explosive Water Jet in Shallow Water[D].Changsha:National University of Defense Science and Technology. | |
Zhu Z, Mohanty B, Xie H,2006.Numerical investigation of blasting-induced crack initiation and propagation in rocks[J].International Journal of Rock Mechanics and Mining Sciences,44(3):412-424. | |
范勇,郭一鸣,冷振东,等,2024.交错起爆下爆炸应力波的碰撞机制与破岩效果[J].爆炸与冲击,44(6):92-104. | |
范勇,孙金山,贾永胜,等,2023.高地应力硐室光面爆破孔间应力相互作用与成缝机制[J].岩石力学与工程学报,42(6):1352-1365. | |
费鸿禄,纪海楠,山杰,2023.露天台阶水介质间隔装药结构优选及对比试验研究[J].黄金科学技术,31(6):930-943. | |
高启栋,靳军,王亚琼,等,2021.孔内起爆位置对爆破振动场分布的影响作用规律[J].爆炸与冲击,41(10):135-149. | |
高启栋,靳军,王亚琼,等,2022.隧道掏槽爆破中起爆点位置对爆炸能量传输的影响作用及其比选研究[J].中国公路学报,35(5):140-152. | |
高启栋,卢文波,冷振东,等,2020.岩石爆破中孔内起爆位置对爆炸能量传输的调控作用研究[J].岩土工程学报,42(11):2050-2058. | |
高启栋,卢文波,杨招伟,等,2019.垂直孔爆破诱发地震波的成分构成及演化规律[J].岩石力学与工程学报,38(1):18-27. | |
胡少斌,王恩元,陈鹏,等,2012.起爆位置对煤岩体深孔爆破的影响[J].煤矿安全,43(2):167-171. | |
金鑫,高佳明,苏宏伟,等,2023.露天矿深孔台阶爆破间隔装药爆破试验研究[J].爆破,40(2):42-47. | |
康永全,薛里,孙崔源,等,2020.间隔不耦合装药结构形式及特点分析[J].工程爆破,26(5):62-67. | |
冷振东,范勇,卢文波,等,2019.孔内双点起爆条件下的爆炸能量传输与破岩效果分析[J].岩石力学与工程学报,38(12):2451-2462. | |
李洪伟,雷战,刘伟,等,2019.起爆方式对岩石柱状装药爆破作用的影响[J].工程爆破,25(5):28-34. | |
李萍丰,王秀龙,闫小兵,等,2024.柱状药包侧向爆破下抵抗线对岩石破碎特性的影响研究[J].岩土力学,45(5):1388-1396. | |
刘万通,徐振洋,张久洋,等,2023.孔底间隔介质对岩体损伤规律研究[J].有色金属工程,13 (10):82-94. | |
刘彦,黄风雷,吴艳青,2019.爆炸物理学[M].北京:北京理工大学出版社. | |
骆浩浩,杨仁树,马鑫民,等,2023.石禄铁矿扇形中深孔爆破块度分布特征研究[J].采矿与安全工程学报,40(2):371-378. | |
秦健飞,秦如霞,2016.水介质换能爆破技术[J].采矿技术,16(6):103-105. | |
秦健飞,秦如霞,2020.水介质换能爆破破岩机理试验验证研究[J].采矿技术,20(6):140-144. | |
杨仁树,赵勇,方士正,等,2023.起爆方式对间隔装药应力场分布及裂纹扩展的影响[J].工程科学学报,45(5):714-727. | |
张世豪,韩晶,王华,等,2014.混凝土中多点同步爆炸能量聚集效应分析[J].爆破,31(1):19-24,81. | |
郑监,2016.浅水中爆炸水射流的形成机理研究[D].长沙:国防科学技术大学. |
/
〈 | 〉 |