img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

Experimental Study on Impact Crushing Characteristics and Energy Consumption of Single Particle Material

  • Song LI ,
  • Limei ZHAO ,
  • Canhui WU
Expand
  • School of Mechanical Engineering,Guizhou University,Guiyang 550025,Guizhou,China

Received date: 2024-06-26

  Revised date: 2024-11-05

  Online published: 2024-12-20

Abstract

The process of material particle fragmentation in impact crushers is inherently complex,posing challenges in quantifying and characterizing particle crushing behavior.This study aims to investigate the influence of crushing parameters on the impact crushing characteristics and energy consumption of material particles,thereby elucidating the underlying crushing mechanisms of impact crushers.An analytical method grounded in an active impact crushing experiment was proposed to examine the crushing characteristics of material particles. Firstly,to address the discrepancy between passive impact experiments,which are commonly employed,and the active impact crushing behavior of materials in impact crushers,this study involves the design and development of an active impact crushing experimental apparatus powered by compressed air.This device is intended to investigate the impact crushing behavior of material particles under active impact conditions. Subsequently,impact crushing experiments were conducted utilizing limestone particles of varying initial sizes as test subjects.These experiments were performed under different impact velocities to analyze the crushing patterns of the limestone particles,the degree of fragmentation,the sand formation rate,and the specific energy consumption per unit of produced sand. The findings indicate that an increase in impact velocity leads to the formation of a greater number of cracks upon impact,thereby resulting in finer fragmented particles. The impact velocity exerts a substantial influence on the average particle size of the crushed product. As the impact velocity increases,there is a corresponding reduction in particle size,leading to a gradual decrease in the average particle size.The most pronounced reduction is observed within the velocity range of 22.4 m/s to 34.0 m/s and particle size range of 22 mm to 25 mm. Beyond this range,as the impact velocity continues to rise,the rate of sand formation deceleration becomes evident. Notably,when the impact velocity exceeds 55.0 m/s,there is a marked increase in the specific energy consumption per unit of sand produced.Taking into account both the rate of sand formation and the specific energy consumption,the optimal impact effect for limestone particles is attained at an impact velocity of approximately 55.0 m/s.

Cite this article

Song LI , Limei ZHAO , Canhui WU . Experimental Study on Impact Crushing Characteristics and Energy Consumption of Single Particle Material[J]. Gold Science and Technology, 2024 , 32(6) : 1068 -1076 . DOI: 10.11872/j.issn.1005-2518.2024.06.192

References

Cai Gaipin, Guo Jinshan, Xia Liuyang,2016a.Particle size distribution characteristics of bond impact based on Weibull distribution[J].Metal Mine45(4):118-121.
  Cai Gaipin, Liu Zhigang, Xu Qin,et al,2016b.Experimental study on impact energy and crushing effect[J].Mining Research and Development36(1):106-110.
  Cao Zhen, Zhao Limei, Sheng Shoulin,et al,2022.Wear analysis and optimization study of vertical shaft impact crusher gui-de plate[J].Modern Manufacturing Engineering,(9):1-8.
  Cavalcanti P P, Petit H A, Thomazini A D,et al,2021.Modeling of degradation by impact of individual iron ore pellets[J].Powder Technology,378:795-807.
  Dang Faning, Wang Baosheng, Li Yutao,et al,2024.Study on the influence of impact velocity and aggregate ratio on dynamic strength of concrete[J].Journal of Xi’an University of Architecture and Technology(Natural Science Edition)56(1):7-13,22.
  Fuerstenau D, Abouzeid A Z,2002.The energy efficiency of ball milling in comminution[J].International Journal of Mi-neral Processing,67(1/2/3/4):161-185.
  Gao Feng, Gan Deqing, Zhang Jinghui,et al,2020.Relation of crushing effect of magnetite-quartzite to energy under drop weight impact[J].Journal of Harbin Institute of Technology52(4):160-169.
  Gao Wenxue, Liu Yuntong,2003.Energy dissipation of rock damage under impact loading[J].Chinese Journal of Rock Mechanics and Engineering,(11):1777-1780.
  Guo Qing, Deng Chaozhu, Xu Yongfu,et al,2024.Fractal dimension change of particle fragmentation and energy dissipation in impact test[J].Chinese Journal of Underground Space and Engineering20(1):107-112.
  Guo Runnan, Yang Jinlin, Ma Shaojian,et al,2020.Effect of particle size on calcite impact crushing[J].Nonferrous Metals(Beneficiation),(1):64-68.
  He Xinyao, Chang Yuan, Ren Fuqiang,2024.Experimental study on mechanical and acoustic emission features of frozen sandstone under drop hammer impact[J].Journal of Mine Automation50(5):135-141,156.
  Hong Liang,2008.Size Effect on Strength and Energy Dissipation in Fracture of Rock Under Impact Loads[D].Changsha:Central South University.
  Hu Zhenzhong, Zhuang Yaming, Cai Tianyi,et al,2015.Experimental study on energy consumption and particle size distribution of single particle coal under impact crushing[J].Journal of China Coal Society40(Supp.1):230-234.
  Jiang Hongxiang, Du Changlong, Liu Songyong,2013.The effects of impact velocity on energy and size distribution of rock crushing[J].Journal of China Coal Society38(4):604-609.
  Long Qitao, Zhao Limei, Cao Zhen,et al,2023.Wear analysis of throwing head and structure optimization of vertical shaft impact crusher[J].Mining Research and Development,(11):188-194.
  Luo Zuoqian, Liu Youzhi,2013.Test study of influential factors on quality of artificial marble sand processed by various crushing equipments[J].Yangtze River44(14):54-56.
  Munn T J N, Morrell S, Morrison R D,et al,1999.Mineral comminution circuits:Their operation and optimisation[J].Journal of Experimental Nanoscience10(3):1-8.
  Shi F,2016.A review of the applications of the JK size-dependent breakage model:Part 1:Ore and coal breakage characterisation[J].International Journal of Mineral Processing,155:118-129.
  Shi F, Kojovic T,2007.Validation of a model for impact breakage incorporating particle size effect[J].International Journal of Mineral Processing82(3):156-163.
  Tavares L M, Cavalcanti P P, de Carvalho R M,et al,2018.Fracture probability and fragment size distribution of fired iron ore pellets by impact[J].Powder Technology,336:546-554.
  Tavares L M, Rodriguez V A, Sousani M,et al,2021.An effective sphere-based model for breakage simulation in DEM[J].Powder Technology,392:473-488.
  Yu Luojian,2022.Research on Crushing Mechanism and Loading Technology of Manufactured Sand[D].Xiamen:Huaqiao University.
  Zhou Wentao, Han Yuexin, Li Yanjun,et al,2019.Establishment and prediction of particle size distribution model for impact crushing[J].Chinese Journal of Nonferrous Metals29(6):1316-1323.
  蔡改贫,郭进山,夏刘洋,2016a.基于Weibull分布的Bond冲击破碎粒度分布特征[J].金属矿山45(4):118-121.
  蔡改贫,刘志刚,许琴,等,2016b.冲击破碎能与破碎效果试验研究[J].矿业研究与开发36(1):106-110.
  曹振,赵丽梅,盛守林,等,2022.立轴冲击式破碎机导料板的磨损分析与优化研究[J].现代制造工程,(9):1-8.
  党发宁,王宝生,李玉涛,等,2024.冲击速度及骨料率对混凝土动强度的影响研究[J].西安建筑科技大学学报(自然科学版)56(1):7-13,22.
  高锋,甘德清,张静辉,等,2020.磁铁石英岩落锤冲击破碎效果与能量关系[J].哈尔滨工业大学学报52(4):160-169.
  高文学,刘运通,2003.冲击载荷作用下岩石损伤的能量耗散[J].岩石力学与工程学报,(11):1777-1780.
  郭庆,邓朝柱,徐永福,等,2024.冲击荷载下颗粒破碎分维变化及能量耗散研究[J].地下空间与工程学报20(1):107-112.
  郭润楠,杨金林,马少健,等,2020.粒度对方解石冲击粉碎影响研究[J].有色金属(选矿部分),(1):64-68.
  贺馨瑶,常远,任富强,2024.落锤冲击下冻结单裂隙砂岩力学及声发射特征试验研究[J].工矿自动化50(5):135-141,156.
  洪亮,2008.冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D].长沙:中南大学.
  胡振中,庄亚明,蔡天意,等,2015.单颗粒煤岩冲击破碎能耗与粒度分布特性试验研究[J].煤炭学报40(增1):230-234.
  江红祥,杜长龙,刘送永,2013.冲击速度对煤岩破碎能量和粒度分布的影响[J].煤炭学报38(4):604-609.
  龙启涛,赵丽梅,曹振,等,2023.立轴冲击式破碎机抛料头磨损分析及转子结构优化[J].矿业研究与开发,(11):188-194.
  罗作仟,刘佑枝,2013.不同破碎设备对大理岩制砂质量影响的试验研究[J].人民长江44(14):54-56.
  余罗兼,2022.砂石颗粒破碎机理及载荷工艺的研究[D].厦门:华侨大学.
  周文涛,韩跃新,李艳军,等,2019.冲击破碎粒度分布模型建立与预测[J].中国有色金属学报29(6):1316-1323.
Outlines

/