Research on the Quantitative Relationship Between the Uniaxial Compressive Strength of Filling Body and Amount of Hydration Products
Received date: 2024-05-23
Revised date: 2024-09-16
Online published: 2024-12-20
To investigate the relationship between the strength of tailings filling bodies and the content of hydration products,mechanical experiments were initially performed to assess their uniaxial compressive strength.The content of various hydration products within the filling body test blocks was quantified using thermogravimetric-differential scanning calorimetry (TG-DSC) experiments.Subsequently,regression analysis was employed to examine the correlation between the uniaxial compressive strength of the filling body test blocks and the content of hydration products across different mass concentrations,thereby establishing the relationship between these variables.The results of the strength tests indicate that the early-age strength of the cement powder test block is significantly greater than that of the conventional Portland cement test block.However,this strength advantage diminishes over time.Nonetheless,at 28 days of age,the cement powder test block continues to exhibit superior strength compared to the ordinary Portland cement test block.Furthermore,the thermal analysis experiment reveals that the test block incorporating cementitious powder as the binding material undergoes three distinct weight loss stages during the heating process,corresponding to C-S-H dehydration,CaCO3 decomposition,and a weight loss peak temperature between 1 144 ℃ and 1 176 ℃ .The test block utilizing ordinary Portland cement as the cementitious material experiences weight loss across the aforementioned three stages and undergoes the decomposition of Ca(OH)₂.Regression analysis indicates a strong linear correlation between the strength of the cementitious powder test block and its C-S-H content.Furthermore,the strength of the cement test blocks is associated with the levels of C-S-H and Ca(OH)₂,with the influence of C-S-H content on strength being more pronounced than that of Ca(OH)₂.
Jie LIU , Tengfei BAI , Guangbo LI , Jiaren GUO , Yuhang SHENG . Research on the Quantitative Relationship Between the Uniaxial Compressive Strength of Filling Body and Amount of Hydration Products[J]. Gold Science and Technology, 2024 , 32(6) : 1046 -1055 . DOI: 10.11872/j.issn.1005-2518.2024.06.142
Benzaazoua M, Fall M, Belem T,2004.A contribution to understanding the hardening process of cemented pastefill[J].Minerals Engineering,17(2):141-152. | |
Chen X, Shi X Z, Zhou J,et al,2019.Effect of overflow tailings properties on cemented paste backfill[J].Journal of Environmental Management,235:133-144. | |
Cheng Haiyong, Wu Aixiang, Wu Shunchuan,et al,2022.Research status and development trend of solid waste backfill in metal mines[J].Chinese Journal of Engineering,44(1):11-25. | |
Han Jing, Wang Zhuoran, Fu You,et al,2023.Effects of temperature on rheological and strength properties of cemented tailings backfill containing slag based binder[J].Metal Mines,52(4):45-49. | |
Li Guangbo, Sheng Yuhang, Wu Zaihai,et al,2020.Study on the strength influencing law and its optimum of different gradation tailings in a mine[J].China Mining Magazine,29(11):142-146. | |
Li Guangbo, Sheng Yuhang, Wu Zaihai,et al,2023.Research on strength requirement optimization of infill bodies under the influence of faults[J].Nonferrous Metals Science and Engineering,(5):684-691. | |
Liu Xuan, Li Huixin,2021.A study on preparation and hydration products of iron tailings powder cementitious material[J].Journal of Shangluo University,(6):31-34,47. | |
Liu Yin, Du Yujiao, Wang Haoyu,et al,2023.Effect of mixing water quality on the strength of filling paste and prediction model[J].Mining Research and Development,(2):62-69. | |
Lu Yanze, Wang Lijie, Wang Sheguang,et al,2022.Development of steel slag based composite filling cementitious material and optimization of its proportion[J].China Mining,(11):123-128. | |
Qi C C, Fourie A,2019.Cemented paste backfill for mineral tailings management:Review and future perspectives[J].Minerals Engineering,144:106025. | |
Sheng Yuhang, Song Zepu, Wang Zengjia,2023.Effects of superplasticizer and flocculants on thickening performance and strengh of overflow taillings[J].Nonferrous Metals(Mining Section),75(3):71-76. | |
Tu Bo, Ji Xiankun, Wang Hailong,et al,2022.Differential analysis of properties of cement based and mining alkali activated cementitious materials[J].Metal Mining,51(10):48-56. | |
Wu Aixiang, Wang Yong, Zhang Minzhe,et al,2021.New development and prospect of key technology in underground mining of metal mines[J].Metal Mine,50(1):1-13. | |
Wu Aixiang, Yang Ying, Cheng Haiyong,et al,2018.Status and prospects of paste technology in China[J].Chinese Journal of Engineering,40(5):517-525. | |
Wu Aixiang, Zhang Jinjun, Wang Yiming,et al,2024.Cemented paste backfill:Transformative technology for green mining in metal mines[J].The Chinese Journal of Nonferrous Metals,34(5):1652-1666. | |
Wu Fan, Gao Qian, Yang Zhiqiang,2021.Orthogonal experiment on ratio of whole tailings cementitious materials and strength model of filling body[J].The Chinese Journal of Nonferrous Metals,(8):2269-2278. | |
Xu Gaofeng, Wang Xin, Liu Tiejun,et al,2023.Design of unclassified tailings paste filling system for Wushan copper mine[J].Nonferrous Metals Engineering and Research,(4):6-10. | |
Xue Tianxi, Li Guangbo, Wu Zaihai,et al,2023.Study on mechanical properties of cemented backfill with different geometry[J].Mining Research and Development,(2):50-54. | |
Yang Jiguang,2019.Reasonable gradation’s tailings paste filling body strength in a gold mine[J].Nonferrous Metals(Mining Section),71(6):82-88. | |
Yu Yunlin, Hou Kepeng, Yang Bajiu,et al,2024.Study on pillar mining scheme of Gaofengshan ore section in Yunxi[J].Gold Science and Technology,32(3):445-457. | |
Zhang Jianqiang, Zhang Lujia,,Zhang Ming,et al,2024.Study on the equivalent identification of rock mechanics parameters and numerical simulation of the slope stability[J].Nonferrous Metals(Mining Section),76(5):149-156,170. | |
Zhang Lei, Guo Lijie, Wei Xiaoming,et al,2023.Study on filling test of slag-based binder and microstructure evolution of backfill[J].Nonferrous Metals Engineering,(5):84-93. | |
Zhang Youzhi, Gan Deqing, Xue Zhenlin,et al,2022.Correlation mechanism between pore structure and backfill strength based on NMR technology[J].Advanced Engineering Sciences,54(4):121-128. | |
Zhao Piqi, Sun Qian, Yang Xinyue,et al,2024.Calcium silicate hydrate gels—A short review[J].Journal of the Chinese Ceramic Society,(5):1710-1721. | |
Zhu Gengjie, Zhu Wancheng, Qi Zhaojun,et al,2023a.Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism[J].Journal of Engineering Science,(8):1304-1315. | |
Zhu Gengjie, Zhu Wancheng, Sun Xianteng,et al,2023b.Strength properties of cemented tailings backfill mixed by high salinity underground mine water[J].Metal Mines,52(3):36-43. | |
程海勇,吴爱祥,吴顺川,等,2022.金属矿山固废充填研究现状与发展趋势[J].工程科学学报,44(1):11-25. | |
韩静,王卓然,付有,等,2023.温度对矿渣基充填料流变和强度影响试验研究[J].金属矿山,52(4):45-49. | |
李广波,盛宇航,吴再海,等,2020.某矿不同级配尾砂强度影响规律及其优化研究[J].中国矿业,29(11):142-146. | |
李广波,盛宇航,吴再海,等,2023.基于断层影响下的充填体强度需求优化研究[J].有色金属科学与工程,(5):684-691. | |
刘璇,李辉新,2021.铁尾矿微粉胶凝材料的制备及其水化产物研究[J].商洛学院学报,(6):31-34,47. | |
刘音,杜玉娇,王昊宇,等,2023.拌合水水质对充填膏体强度的影响及预测模型[J].矿业研究与开发,(2):62-69. | |
路燕泽,王立杰,王社光,等,2022.钢渣基复合充填胶凝材料开发及配比优化[J].中国矿业,(11):123-128. | |
盛宇航,宋泽普,王增加,2023.絮凝剂和减水剂对尾砂浓密性能与充填体强度的影响[J].有色金属(矿山部分),75(3):71-76. | |
涂博,纪宪坤,王海龙,等,2022.水泥基和矿用碱激发胶凝材料性能差异化分析[J].金属矿山,51(10):48-56. | |
吴爱祥,王勇,张敏哲,等,2021.金属矿山地下开采关键技术新进展与展望[J].金属矿山,50(1):1-13. | |
吴爱祥,杨莹,程海勇,等,2018.中国膏体技术发展现状与趋势[J].工程科学学报,40(5):517-525. | |
吴爱祥,张晋军,王贻明,等,2024.膏体充填:金属矿绿色开采的变革性技术[J].中国有色金属学报,34(5):1652-1666. | |
吴凡,高谦,杨志强,2021.全尾砂胶凝材料配比正交试验及其充填体强度模型[J].中国有色金属学报,(8):2269-2278. | |
许高锋,王鑫,刘铁军,等,2023.武山铜矿全尾膏体充填系统设计[J].有色冶金设计与研究,(4):6-10. | |
薛田喜,李广波,吴再海,等,2023.不同形状胶结充填体的力学性能研究[J].矿业研究与开发,(2):50-54. | |
杨纪光,2019.某金矿合理级配尾砂膏体充填体强度研究与试验[J].有色金属(矿山部分),71(6):82-88. | |
虞云林,侯克鹏,杨八九,等,2024.云锡高峰山矿段矿柱回采方案研究[J].黄金科学技术,32(3):445-457. | |
张建强,张陆佳,张明,等,2024.矿渣基胶凝材料固废充填体强度与微观结构研究[J].有色金属(矿山部分),76(5):149-156,170. | |
张雷,郭利杰,魏晓明,等,2023.矿渣基胶凝材料充填试验及胶结体微观结构演化研究[J].有色金属工程,(5):84-93. | |
张友志,甘德清,薛振林,等,2022.基于NMR技术的孔隙结构与充填体强度关联机制[J].工程科学与技术,54(4):121-128. | |
赵丕琪,孙乾,杨新月,等,2024.水化硅酸钙凝胶的研究进展[J].硅酸盐学报,(5):1710-1721. | |
朱庚杰,朱万成,齐兆军,等,2023a.固废基充填胶凝材料配比分步优化及其水化胶结机理[J].工程科学学报,(8):1304-1315. | |
朱庚杰,朱万成,孙显腾,等,2023b.高矿化度矿井水制备尾砂胶结充填体的强度性能[J].金属矿山,52(3):36-43. |
/
〈 |
|
〉 |