Research and Application of Cemented Filling Method to Sublevel Caving Method Under Soft Broken Rock Mass Condition
Received date: 2024-04-24
Revised date: 2024-07-12
Online published: 2024-09-19
Following the instability incident in the upper middle section of the filling stope at the West No.2 mining area of Longshou mine in Jinchuan,the original downward-layered consolidated filling method was replaced with the non-pillar sublevel caving method.To investigate critical technical challenges,such as cover layer formation and stope stability associated with the practical application of this method,numerical simulation techniques were employed for the research.The research findings suggest that as the sublevel stope area within a caving stope expands,the composite roof experiences a sequence of progressive failure stages.These stages include the initiation of failure cracks,dispersed bulk caving,arch batch caving,and plunger integral caving.By the conclusion of the first sublevel mining,the height of the roof collapse is expected to exceed 30 meters,thereby forming a sufficiently thick cover layer for the caving method stope.Concurrently,during the mining process,plastic zones are generated on the surface of the roof along the mining approach.The support structure serves a critical function in anchoring and stabilizing the majority of the plastic zones,thereby contributing to the overall stability of the mining approach.Despite the minimal displacement observed in the access roof,there is a pronounced stress concentration within 5 meters behind the working face,necessitating continued attention.An industrial experiment was subsequently conducted on-site,employing the non-pillar sublevel caving method and utilizing induced caving technology to establish a cover layer.To mitigate the risk of large-scale collapse of the composite roof,a technical strategy involving“stepped mining and uniform expansion of goaf combined with total ore extraction control”was implemented on-site.Microseismic monitoring and on-site tracking data revealed that during the initial sublevel mining phase,the actual caving height of the roof in the mining area surpassed 20 meters,resulting in the formation of a thick cover layer approximately 30 meters thick,inclusive of the reserved ore layer.Throughout the entire mining process,the stope remained in a stable condition.To address the issue of significant damage to the access road in the fractured ore and rock zone,a comprehensive technical scheme incorporating multiple support structures was proposed.For the problem of medium and deep hole damage,a systematic approach involving hole inspection,hole dredging,and hole filling was established.Additionally,relevant equipment was promptly introduced to mitigate operational intensity and enhance the applicability of the non-pillar sublevel caving method under the soft,fractured ore and rock conditions prevalent in the Jinchuan mining area.
Xu LU , Baohui TAN , Zhen GONG , Dengfeng SU , Ganggang ZHANG , Yingpeng HU . Research and Application of Cemented Filling Method to Sublevel Caving Method Under Soft Broken Rock Mass Condition[J]. Gold Science and Technology, 2024 , 32(5) : 905 -915 . DOI: 10.11872/j.issn.1005-2518.2024.05.114
http://www.goldsci.ac.cn/article/2024/1005-2518/1005-2518-2024-32-5-905.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
陈烈,陈星明,韩方建,2019.改进AHP在采矿方法优选中的应用[J].化工矿物与加工,48(7):1-5,8.
|
郭辉文,何治良,张志贵,等,2020.充填体下无底柱分段崩落法采场结构参数对回采进路稳定性影响分析[J].矿业研究与开发,40(4):12-18.
|
何荣兴,陈丽媛,任凤玉,2022.我国无底柱分段崩落法损失贫化研究现状及发展方向[J].金属矿山,51(11):1-9.
|
李杰林,高乐,杨承业,等,2022.大型复杂采空区群的稳定性数值分析及隐患区域预测[J].黄金科学技术,30(3):315-323.
|
李楠,任凤玉,赵云峰,等,2010.小汪沟铁矿露天转地下覆盖层形成方法研究[J].金属矿山,39(12):9-11.
|
李胜辉,王立杰,刘志义,等,2021.复杂破碎矿体试验采场稳定性分析及结构参数优化[J].金属矿山,50(8):41-45.
|
卢宏建,甘德清,陈超,2014.杏山铁矿露天转地下覆盖层形成方法[J].金属矿山,43(1):25-28.
|
罗佳,柳小胜,周爱民,2016.高分段无底柱崩落法放顶方法选择研究[J].矿业研究与开发,36(10):6-10.
|
苏华友,王永定,谭宝会,等,2022.大面积胶结充填体诱导冒落机理及其发展过程研究[J].黄金科学技术,30(5):713-723.
|
谭宝会,胡颖鹏,张志贵,等,2022a.无底柱分段崩落法采场结构参数:发展现状、确定方法及存在的问题[J].化工矿物与加工,51(11):52-64.
|
谭宝会,龙卫国,张志贵,等,2022b.龙首矿分支矿体崩落法高效低贫损回采研究[J].矿业研究与开发,42(7):7-13.
|
吴爱祥,韩斌,刘同有,等,2003.金川镍矿不良岩层巷道变形与支护研究[J].岩石力学与工程学报,22(增2):2595-2600.
|
武拴军,张志贵,王永定,等,2021.诱导冒落在龙首矿崩落法覆盖层形成中的应用[J].矿业研究与开发,41(10):14-21.
|
姚道春,2019.大团山矿床地下开采采场稳定性研究[J].中国矿山工程,48(6):1-5,19.
|
张长锁,2021.某铁矿破碎岩体巷道支护参数优化设计[J].中国矿业,30(增1):296-300.
|
张志贵,陈星明,叶青,等,2015.大结构参数无底柱分段崩落法在缓倾斜中厚矿体中的应用[J].金属矿山,44(8):1-5.
|
周超群,2021.北洺河铁矿断层破碎带区域巷道掘支施工技术[J].有色金属(矿山部分),73(1):1-4,27.
|
/
〈 |
|
〉 |