Study on Grinding Characteristics of Nano-composite Ceramic Ball as Magne-tite Fine Grinding Medium
Received date: 2024-01-21
Revised date: 2024-04-08
Online published: 2024-08-27
The three-stage grinding process commonly utilizes steel forging or steel balls as the fine grinding medium,resulting in issues such as high energy consumption,high ball consumption,and poor particle size distribution.Introducing a new grinding medium,nano-composite ceramic balls,offers a range of superior properties including high hardness,good wear resistance,low energy consumption,and reduced over-crushing.Despite these advantages,ceramic balls have not yet been incorporated into the three-stage grinding process or fine grinding operations.The study conducted a batch grinding experiment using the three-stage ball mill feed from Jianshan iron mine as the focus of research.The investigation examined the grinding dynamics and statistical properties of steel forging and ceramic balls as fine grinding media,and analyzed the impact of ceramic ball grinding process parameters on product particle size characteristics.Comparison of the mean values of R2 and error in kinetic fitting characteristic parameters revealed a poor fit for the degree of n and first-order linear fitting in ultra-fine grained magnetite.The linear characteristics of ultra-fine grained magnetite grinding dynamics are not readily apparent and exhibit a significant margin of error,yet they predominantly align with first-order grinding dynamics.A comparison of the grinding kinetic parameter k indicates that ceramic balls demonstrate superior fine grinding capabilities compared to steel forging.Additionally,the analysis of particle size characteristics in batch grinding products and fine grade regeneration rates suggests that optimal grinding conditions entail a grinding concentration of 75%,a medium filling rate of 38%,and an ideal mixing ratio of all-ceramic ball diameters at Φ25:Φ20:Φ15 of 50%:30%:20%.The optimal mixing ratio of ceramic balls and steel balls,with diameters of Φ25,Φ20,and Φ15 mm in proportions of 50%,30%,and 20% respectively,resulted in a filling rate of 32% for the mixed porcelain balls.In comparison,using single diameter 30 mm steel balls achieved a filling rate of 6%.Following the implementation of ceramic ball milling in an industrial setting,the power consumption,ball consumption,and overflow product particle size characteristics were monitored over a one-month period.Results showed a 17.52% decrease in ball consumption,a 42.37% reduction in power consumption,and a 32.11% decrease in comprehensive grinding costs,while maintaining the same overflow fineness and iron concentrate grade.The ceramic ball can be used as a new medium to completely replace the steel forging mill.
Zheyang LI , Hui XU , Feng XIE , Longlong LI , Xiaopu ZHANG , Xin YAO , Caibin WU . Study on Grinding Characteristics of Nano-composite Ceramic Ball as Magne-tite Fine Grinding Medium[J]. Gold Science and Technology, 2024 , 32(4) : 694 -703 . DOI: 10.11872/j.issn.1005-2518.2024.04.031
null | Bu Xianzhong, Wang Zhao, Zheng Canhui,2018.Study on rheological effect of montmorillonite during grinding[J].Non-metallic Mines,41(5):76-78. |
null | Cao Chengchao, Shao Hailong, Yan Haijun,et al,2020.Application of steel forging grinding medium to fine grinding of Qijiaojing iron mine [J].Modern Mining,36 (12):112-113,115. |
null | Chen Zhilong, Yang Changlong, Yuan Chengfang,et al,2022.Industrial application of ceramic balls in regrinding operations in metal mines[J].China Tungsten Industry,37(5):56-62. |
null | Duan Xixiang,1988.The research on the relationship between the parameters of grinding dynamic and the time for grinding[J].Journal of Kunming Institute of Technology,(5):23-33. |
null | Duan Xixiang,2012.Ore Crushing and Grinding[M].Beijing:Metallurgical Industry Press. |
null | Fang X, Wu C B, Liao N N,et al,2022a.The first attempt of applying ceramic balls in industrial tumbling mill:A case study[J].Minerals Engineering,180:107504. |
null | Fang X, Wu C B, Yuan C F,et al,2022b.Can ceramic balls and steel balls be combined in an industrial tumbling mill?[J].Powder Technology,412:118020. |
null | Fang Xin, Xu Jindong, Tong Jiaqi,et al,2022.The industrial application of ceramic ball grinding in Hunan Shizhuyuan Company [J].China Tungsten Industry,37(5):44-49. |
null | Gu Guohua, Li Qingke, Wu Luandong,et al,2023.Progress in research of micro-fine mineral flotation technology in terms of grinding,pulping and separation system[J].Mining and Metallurgy Engineering,43(2):40-43. |
null | Han Yuexin,2022.Grinding Principle[M].Beijing:Metallurgical Industry Press. |
null | Hou Ying, Ding Yazhuo, Yin Wanzhong,et al,2013.Influence of grinding kinetics parameters on grinding speed[J].Journal of Northeastern University(Natural Science Edition),34(5):708-711. |
null | Lai Junquan, Xiang Zixiang, Li Yuqing,et al,2021.Grinding kinetics study of nano-ceramic spheres as fine grinding medium [J].Nonferrous Metals Science and Engineering,12(3):100-105. |
null | Liao Ningning, Tong Jiaqi, Duan An’an,et al,2022.Effects of grinding media on the fine grinding behavior of tungsten ore[J].China Tungsten Industry,37(5):26-31,43. |
null | Luo Shengle, Wang Xin, Zhang Fuhua,et al,2023.Study on the grinding kinetics of feldspar with ceramic ball as grinding medium [J].Nonferrous Metals(Mineral Processing Section),(1):28-34. |
null | Tong J Q, Wu C B, Wang Y H,et al,2023.Effect on fine particles output characteristics of ceramic ball grinding[J].Minerals,13(11):1416.. |
null | Wu Caibin,2022.The theoretical foundation and development trend of non-steel-ball grinding technology[J].China Tungsten Industry,37(5):1-6. |
null | Wu Caibin, Zhou Yichao, Cheng Changmin,et al,2016.Analysis of different contact ways of grinding media in grinding kinetics in tungsten[J].Nonferrous Metals Engineering,6(4):58-62. |
null | Wu Mingzhu,1981.Discussion on ways to save energy consumption in grinding[J].Nonferrous Metals (Mineral Processing Section),(6):32-36. |
null | Wu Zhiqiang, Fang Xin, Tong Jiaqi,et al,2019.Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium[J].Nonferrous Metals Science and Engineering,10(5):91-96. |
null | Ye Jingsheng, Liao Ningning, Wu Zhiqiang,et al,2018.Grinding energy consumption and particle size distribution characteristics of steel forging under fine grinding medium [J].Nonferrous Metals Science and Engineering,9(6):65-71. |
null | Yu Xun,2023.Research progress and application of nano-ceramic ball technology for new fine grinding mediu[J].Nonferrous Metals Engincering,13(11):76-81. |
null | Yuan C F, Wu C B, Fang X,et al,2022.Effect of slurry concentration on the ceramic ball grinding characteristics of magnetite[J].Minerals,12(12):1569-1569. |
null | Yuan C F, Wu C B, Ling L,et al,2023.Ceramic grinding kinetics of fine magnetite ores in the batch ball mill[J].Minerals,13(9):1188. |
null | Yuan Chengfang, Lai Junquan, Yu Chao,et al,2022.A comparative study of grinding kinetics of ceramic balls and steel balls for tungsten ore in ball mills[J].China Tungsten Industry,37 (5):32-37. |
null | Zeng Chong, Lai Junquan, Zhong Jiuxiang,et al,2022.Design of porcelain ball milling process for recovery of feldspar from tungsten tailings [J].China Tungsten Industry,37(5):78-84. |
null | Zeng Chunshui,1998.Discussion on the influence of grinding concentration on grinding effect[J].China Tungsten Industry,(2):25-27. |
null | Zhang Hengxing, Zheng Ping, Ling Peihong,et al,2022.Study of wear resistance of nanoceramic balls [J].China Tungsten Industry,37(5):13-18. |
null | Zhao Ruichao, Han Yuexin, He Mingzhao,et al,2018.Ball grinding characteristic and breakage parameters of chlorite [J].Chinese Journal of Nonferrous Metals,28(5):1076-1082. |
null | 卜显忠,王朝,郑灿辉,2018.磨矿过程中蒙脱石的流变效应研究[J].非金属矿,41(5):76-78. |
null | 曹成超,邵海龙,严海军,等,2020.钢锻磨矿介质在七角井铁矿细磨中的应用[J].现代矿业,36(12):112-113,115. |
null | 陈郅隆,杨昌龙,袁程方,等,2022.瓷球在金属矿山中再磨作业的工业应用[J].中国钨业,37(5):56-62. |
null | 段希祥,1988.磨矿动力学参数与磨矿时间的关系研究[J].昆明工学院学报,(5):23-33. |
null | 段希祥,2012.碎矿与磨矿[M] .北京:冶金工业出版社. |
null | 方鑫,徐今冬,童佳琪,等,2022.瓷球磨矿在湖南柿竹园公司中的工业应用[J].中国钨业,37(5):44-49. |
null | 顾帼华,李青柯,巫銮东,等,2023.微细粒矿物浮选技术在磨矿—调浆—分选体系的研究进展[J].矿冶工程,43(2):40-43. |
null | 韩跃新,2022.磨矿原理[M] .北京:冶金工业出版社. |
null | 侯英,丁亚卓,印万忠,等,2013.磨矿动力学参数对磨矿速度的影响[J].东北大学学报(自然科学版),34(5):708-711. |
null | 赖俊全,向子祥,李雨晴,等,2021.纳米陶瓷球作细磨介质下的磨矿动力学[J].有色金属科学与工程,12(3):100-105. |
null | 廖宁宁,童佳琪,段安安,等,2022.磨矿介质对钨矿石细磨行为影响研究[J].中国钨业,37(5):26-31,43. |
null | 罗圣乐,王鑫,张富花,等,2023.陶瓷球为磨矿介质的长石磨矿动力学研究[J].有色金属(选矿部分),(1):28-34. |
null | 吴彩斌,2022.无钢球磨矿能耗基础及其工艺发展趋势[J].中国钨业,37(5):1-6. |
null | 吴彩斌,周意超,程长敏,等,2016.不同接触方式磨矿介质的钨矿磨矿动力学分析[J].有色金属工程,6(4):58-62. |
null | 吴明珠,1981.节约磨矿能耗途径的探讨[J].有色金属(选矿部分),(6):32-36. |
null | 吴志强,方鑫,童佳琪,等,2019.纳米陶瓷球作细磨介质下的磨矿能耗与粒度分布特征[J].有色金属科学与工程,10(5):91-96. |
null | 叶景胜,廖宁宁,吴志强,等,2018.钢锻作细磨介质下的磨矿能耗与粒度分布特征[J].有色金属科学与工程,9(6):65-71. |
null | 余浔,2023.新型细磨介质纳米瓷球技术的研究进展及应用[J].有色金属工程,13(11):76-81. |
null | 袁程方,赖俊全,余超,等,2022.球磨机中钨矿石瓷球和钢球磨矿动力学对比研究[J].中国钨业,37(5):32-37. |
null | 曾冲,赖俊全,钟久祥,等,2022.从钨尾矿回收长石的瓷球磨矿工艺设计[J].中国钨业,37(5):78-84. |
null | 曾春水,1998.浅谈磨矿浓度对磨矿效果的影响[J].中国钨业,(2):25-27. |
null | 章恒兴,郑萍,凌佩红,等,2022.纳米陶瓷球的耐磨性能研究[J].中国钨业,37(5):13-18. |
null | 赵瑞超,韩跃新,何明照,等,2018.绿泥石的球磨特性及其破裂参数[J].中国有色金属学报,28(5):1076-1082. |
/
〈 | 〉 |