img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

Study on the Influence of Concentration Mechanism of Knelson Concentrator on the Separation Effect of Gold Ore

  • Qiao CHEN ,
  • Longxue JI ,
  • Xin DONG ,
  • Rong NI ,
  • Yansong LI ,
  • Linlin TONG ,
  • Hongying YANG
Expand
  • 1.Lanzhou University of Technology, Lanzhou 730000, Gansu, China
    2.Shenyang Nonferrous Metals Research Institute Co. , Ltd. , Shenyang 110000, Liaoning, China
    3.Northeastern University, Shenyang 110000, Liaoning, China

Received date: 2024-04-18

  Revised date: 2024-07-09

  Online published: 2024-08-27

Abstract

The Knelson concentrator,a commonly utilized centrifugal gravity separation device in gold ore processing,is esteemed for its superior recovery efficacy with respect to fine gold.The separation performance of the Knelson concentrator is intricately linked to both material characteristics and operational parameters,with heavy mineral concentration mechanisms varying depending on specific conditions.Consequently,investigating the impact of heavy mineral concentration mechanisms on separation efficiency can be instrumental in enhancing the effectiveness of gold ore separation processes.This study utilized a quartz vein gold ore from Gansu Province as the primary material to investigate the correlation between the concentration criterion (X) of individual enrichment rings of the MD3 Knelson concentrator and the mechanisms of concentration and separation.The findings indicate that heavy minerals were predominantly enriched through plating on the concentrate bed surface when X exceeded 9.In cases where X ranged from 5 to 9,heavy minerals were enriched through the continuous replacement of gangue minerals.Correspondingly,when X was less than 5,heavy minerals were enriched through elutriation.At a rotational speed of 1 465 r/min and a water flow rate of 3.0 L/min,coarse and medium-grained gold were concentrated in the lower rings through substitution,while micro and fine-grained gold were accumulated in the upper rings through surface plating and percolation or migration.The resulting concentrate grade was 124.4×10-6 with a gold recovery rate of 70.36%,indicating optimal beneficiation effectiveness.Excessive X values led to material bed compaction and premature onset of overload phenomena.If the X value is insufficiently large,the high water flow results in the depletion of micro and fine gold particles,which are detrimental to the gold recovery process and should be minimized in industrial applications.

Cite this article

Qiao CHEN , Longxue JI , Xin DONG , Rong NI , Yansong LI , Linlin TONG , Hongying YANG . Study on the Influence of Concentration Mechanism of Knelson Concentrator on the Separation Effect of Gold Ore[J]. Gold Science and Technology, 2024 , 32(4) : 685 -693 . DOI: 10.11872/j.issn.1005-2518.2024.04.106

References

null Basnayaka L, Albijanic B, Subasinghe N,2020.Performance evaluation of processing clay-containing ore in Knelson concentrator[J].Minerals Engineering,152:106372.
null Chen Q, Yang H Y, Tong L L,et al,2020a.Research and application of a Knelson concentrator:A review[J].Minerals Engineering,152:106339.
null Chen Q, Yang H Y, Tong L L,et al,2020b.Ring-by-ring analysis and models of retained mass of quartz in a laboratory Knelson concentrator[J].Minerals Engineering,149:106236.
null Chen Q, Yang H Y, Tong L L,et al,2020c.Analysis of the operating mechanism of a Knelson concentrator[J].Minerals Engineering,158:106547.
null Chen Qiao, Yang Hongying, Chen Guimin,et al,2017.Application of Knelson gravity concentration in quartz vein type gold beneficiation process in China[J].Gold Science and Technology,25(5):73-79.
null Chen Qiao, Yang Hongying, Tong Linlin,et al,2020.Processing a gold ore from Hainan Province using Knelson gravity concentration-flotation[J].Journal of Northeastern University(Natural Science),41(3):413-417,451.
null Coulter T, Subasinghe G K N,2005.A mechanistic approach to modelling Knelson concentrators[J].Minerals Engineering,18(1):9-17.
null Fatahi M R, Farzanegan A,2017.DEM simulation of laboratory Knelson concentrator to study the effects of feed properties and operating parameters[J].Advanced Powder Technology,28(6):1443-1458.
null Fatahi M R, Farzanegan A,2019.Computational modelling of water flow inside laboratory Knelson concentrator bowl[J].Canadian Metallurgical Quarterly,58(2):140-155.
null Ghaffari A, Farzanegan A,2017a.An investigation on laboratory Knelson concentrator separation performance:Part 1:Retained mass modelling[J].Minerals Engineering,(112):57-67.
null Ghaffari A, Farzanegan A,2017b.An investigation on laboratory Knelson concentrator separation performance:Part 2:Two-component feed separation modelling[J].Minerals Engineering,(112):114-124.
null Ghaffari A, Farzanegan A,2018.An investigation on laboratory Knelson concentrator separation performance:Part 3:Multi-component feed separation modelling[J].Minerals Engineering,(122):185-194.
null Koekkilic O, Langlois R, Waters K E,2015.A design of experiments investigation into dry separation using a Knelson concentrator[J].Minerals Engineering,(72):73-86.
null Marion C, Langlois R, K?kk?l?? O,et al,2019.A design of experiments investigation into the processing of fine low specific gravity minerals using a laboratory Knelson concentrator[J].Minerals Engineering,135:139-155.
null Sen G A,2016.Application of full factorial experimental design and response surface methodology for chromite beneficiation by Knelson concentrator[J].Minerals,6(1):1-11.
null Wang Chun,2014.Research on Dynamics of Flow Field and Centrifugal Cone of Verticle Centrifugal Concentrator[D].Ganzhou:Jiangxi University of Science and Technology.
null Wu Junjie,2013.Study on Knelson beneficiation of gold ore in Shaanxi Province[J].Precious Metals,34(3):28-31.
null Xu Feifei, Yu Xue, Chen Xinlin,et al,2015.Study on Knelson gravity separation in a gold mine[J].Non-ferrous Mining and Metallurgy,30(3):27-32.
null Zhang Jinzhong, Jiang Liangyou, Wu Zhenxiang,et al,2003.Knelson concentrators and its application[J].China Mine Engineering,32(3):28-31,37.
null Zhao Minjie, Fang Jianjun, Li Guodong,et al,2016.The application and research progress of Knelson concentrators in mineral beneficiation[J].Conservation and Utilization of Mineral Resources,(4):73-78.
null Zhao Rongyan, Li Tian’en, Zhang Ling,2023.Experimental study on the comprehensive recovery of gold,tungsten and quartz sand form flotation tailings of Dulanggou gold mine in Sichuan Province[J].Gold Science and Technology,31(6):1035-1043.
null 陈桥,杨洪英,陈贵民,等,2017.尼尔森重选在我国石英脉型金矿选矿工艺中的应用[J].黄金科学技术,25(5):73-79.
null 陈桥,杨洪英,佟琳琳,等,2020.海南某金矿尼尔森重选—浮选试验[J].东北大学学报(自然科学版),41(3):413-417,451.
null 王纯,2014.立式离心选矿机流场和离心锥动力学研究[D].赣州:江西理工大学.
null 武俊杰,2013.陕西省某金矿尼尔森选金试验研究[J].贵金属,34(3):28-31.
null 徐飞飞,于雪,陈新林,等,2015.某金矿尼尔森重选试验研究[J].有色矿冶,30(3):27-32.
null 张金钟,姜良友,吴振祥,等,2003.尼尔森选矿机及其应用[J].中国矿山工程,32(3):28-31,37.
null 赵敏捷,方建军,李国栋,等,2016.尼尔森选矿机在国内外选矿中的应用与研究进展[J].矿产保护与利用,(4):73-78.
null 赵荣艳,李天恩,张玲,2023.四川独狼沟金矿浮选尾矿综合回收金、钨和石英砂试验研究[J].黄金科学技术,31(6):1035-1043.
Outlines

/