[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Mining Technology and Mine Management

Research on PPV Prediction Model of Open-pit Mine Based on PSO-XGBoost

  • Zhenyang LI , 1 ,
  • Baogang ZHANG 1 ,
  • Xin XIONG 2 ,
  • Chengye YANG 2 ,
  • Yuqi BAI 1
Expand
  • 1. Beijing Aoxin Chemical Technology Co. , Ltd. , Beijing 100040, China
  • 2. School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China

Received date: 2024-01-11

  Revised date: 2024-06-04

  Online published: 2024-08-27

Abstract

The peak particle velocity(PPV) resulting from blasting vibration serves as a crucial metric in assessing the efficacy of blasting and mining design parameters.To enhance the accuracy of PPV predictions,a novel parameter self-optimizing PSO-XGBoost prediction model is introduced,leveraging the Particle Swarm Optimization (PSO) algorithm in conjunction with optimized Extreme Gradient Boosting (XGBoost).The research focuses on the LK open-pit copper-cobalt mine and examines five influencing factors,namely the maximum single explosive charge,total explosive charge,measured distance to blast center,average depth of blastholes,and elevation difference,as study parameters.A total of 187 sets of measured data from on-site blasting operations are gathered for further investigation into predicting PPV using the PSO-XGBoost model.The findings indicate that the PSO-XGBoost prediction model produces superior prediction evaluation metrics (R 2=0.921,RMSE=0.0752,MAE=0.0717,MBE=0.0683), compared to alternative models,including the traditional XGBoost model,the SSA-XGBoost hybrid optimization model,and the Sariakaliski empirical formula.The sensitivity analysis reveals that the total explosive charge,significantly influences PPV prediction outcomes,underscoring the importance of using an appropriate amount of explosives to avoid energy inefficiency in blasting activities. Furthermore,the research demonstrates that the PSO-XGBoost prediction model,is capable of effectively addressing the nonlinear attributes of various factors,as well as integrating nonlinear and discrete data to develop a dependable,straightforward,and efficient PPV prediction model.This study offers valuable insights for promptly predicting blasting vibration in open-pit mining and assessing the impacts of blasting activities.

Cite this article

Zhenyang LI , Baogang ZHANG , Xin XIONG , Chengye YANG , Yuqi BAI . Research on PPV Prediction Model of Open-pit Mine Based on PSO-XGBoost[J]. Gold Science and Technology, 2024 , 32(4) : 620 -630 . DOI: 10.11872/j.issn.1005-2518.2024.04.022

[an error occurred while processing this directive]

紫金矿业新一轮找矿突破战略行动取得重大成果

紫金矿业旗下黑龙江多宝山铜业据黑龙江省自然资源厅出具的“铜山铜矿Ⅲ、Ⅴ号矿体勘探报告”矿产资源储量评审意见书,2个矿体合计新增铜金属资源量365万t。其中,Ⅴ号矿体铜金属资源量达到281万t,系中国东北地区近40年来唯一探明的超大型单体铜矿,标志着紫金矿业全面落实国家新一轮找矿突破战略行动取得重大成果。

铜山深部矿体勘查工作于2018年启动,2020年取得重大找矿突破,累计投入钻探工作量为7.3×104 m,新发现铜山断层以下Ⅴ号矿体、Ⅲ号矿体规模扩大,除新增铜资源量外,另新增伴生资源钼金属量13万t、金金属量55 t、银金属量1 104 t。

铜山深部矿体的发现,丰富和完善了古生代斑岩型铜矿成矿理论,为多宝山铜山铜矿田周边资源拓展提供了重要参考和借鉴,具有重要的经济和科研价值。多宝山铜业将持续创新科研手段,围绕多宝山矿集区开展成矿规律研究与深边部找矿预测工作,深耕本区域关键矿带和靶区,持续开展风险地质勘查工作,力争实现新突破。

多宝山铜(钼)矿和铜山矿为超大型低品位斑岩型铜矿。本次新增后,矿山铜金属资源量将超过560万t。多宝山铜业已成为我国重要的铜矿生产基地之一,2023年生产铜11万t、金2.6 t。

中关村绿色矿山产业联盟)

http://www.goldsci.ac.cn/article/2024/1005-2518/1005-2518-2024-32-4-620.shtml

Deng Hongwei Luo Liang2023.PPV prediction model based on random forest optimized by SMA algorithm[J].Gold Science and Technology31(4):624-634.

Dong Donglin Zhang Longqiang Zhang Enyu,et al,2023.A rapid identification model of mine water inrush based on PSO-XGBoost[J].Coal Science and Technology51(7):72-82.

Fan Yong Pei Yong Yang Guangdong,et al,2022.Prediction of blasting vibration velocity peak based on an improved PSO-BP neural network[J].Journal of Vibration and Shock41(16):194-200.

Gou Qianqian Zhao Mingsheng Chi En’an,et al,2018.Prediction and application of evaluation factors in blasting vibration based on PCA-BP neural network[J].Mining Research and Development38(12):97-102.

Guo Xiaoqiang2021.Study on the determination of the limit distance of boundary borehole based on blasting vibration[J].Mining Research and Development41(6):26-30.

He Li Liu Yihe Li Linna,et al,2022.Prediction of mine Blasting vibration velocity of mines based on particle swarm -least square support vector machine model[J].Metal Mines51(7):145-150.

Hong Z X Tao M Liu L L,et al,2023.An intelligent approach for predicting overbreak in underground blasting operation based on an optimized XGBoost model[J].Engineering Applications of Artificial Intelligence126(2):1-16.

Hu Xiaobing Chen Zhiyuan Wei Geping,et al,2020.Blasting vibration prediction system based on BP neural network[J].Mining Research and Development40(9):154-158.

Khandelwal M Armaghani D J Faradonbeh R S,et al,2017.Classification and regression tree technique in estimating peak particle velocity caused by blasting[J].Engineering with Computers,33:45-53.

Li D T Yan J L Zhang L2012.Prediction of blast-induced ground vibration using support vector machine by tunnel excavation[J].Applied Mechanics and Materials,170/171/172/173:1414-1418.

Ma C L Wang W H Wang S X,et al,2023.Prediction of shear strength of RC slender beams based on interpretable machine learning[J].Structures,57:105171.

Sadovsky M A1952.Mechanical action of blast waves on data of experimental studies[J].Physics of Explosion12(1):70-110.

Shi Chunyu Zhang Zhihong Zhou Jie,et al,2023.Study on blasting vibration transmission characteristics of rock mass of structural planes with different angles [J].Mining Research and Development43(5):184-189.

Shirani Faradonbeh R Jahed Armaghani D Abd Majid M Z,et al,2016.Prediction of ground vibration due to quarry blasting based on gene expression programming:A new model for peak particle velocity prediction[J].International Journal of Environmental Science and Technology13(6):1453-1464.

Trabi B Bleibinhaus F2023.Blast vibration prediction[J].Geophysical Prospecting71(7):1312-1324.

Tyagi P Sharma A Semwal R,et al,2023.XGBoost odor prediction model:Finding the structure-odor relationship of odorant molecules using the extreme gradient boosting algorithm[J].Journal of Biomolecular Structure and Dynamics12(2):1-15.

Wang Ziyi Wu Guiyi Luo Chang,et al,2023.Study on vibration response and stability of steep slope under multiple blasting vibration[J].Blasting40(3):158-169.

Xu Xiangdong Lu Yu2023.Study on empirical formula of blasting vibration propagation reflecting the influence of height difference[J].Automation and Instrumentation,(6):63-66.

Xuan G Q Wu X Y2023.Support vector regression optimized by black widow optimization algorithm combining with feature selection by MARS for mining blast vibration prediction[J].Measurement,218:113106.

Yu Z Li C Q Zhou J2023.Tunnel boring machine performance prediction using supervised learning method and swarm intelligence algorithm[J].Mathematics11(20):4237.

Zeng Xiaohui Zhang Xuemin Dai Bin,et al,2023.Prediction of tunnel blasting vibration velocity considering influence of number of free surfaces and resistance line[J].China Work Safety Science and Technology19(6):83-89.

Zhang Xiliang2020.Ensemble Learning Model and Engineering Application of Environmental Effect Prediction of Rock Mass Blasting[D].Hefei:University of Science and Technology of China.

Zhou J Qiu Y G Khandelwal M,et al,2021.Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations[J].International Journal of Rock Mechanics and Mining Sciences145(1):104856.

Zou Ping Wang Liang Dai Yong,et al,2023.Establishment and application of blasting vibration prediction system based on SSA-XGBoost [J].Blasting40(3):199-205.

邓红卫,罗亮,2023.基于SMA算法优化随机森林的PPV预测模型[J].黄金科学技术31(4):624-634.

董东林,张陇强,张恩雨,等,2023.基于PSO-XGBoost的矿井突水水源快速判识模型[J].煤炭科学技术51(7):72-82.

范勇,裴勇,杨广栋,等,2022.基于改进 PSO-BP 神经网络的爆破振动速度峰值预测[J].振动与冲击41(16):194-200.

苟倩倩,赵明生,池恩安,等,2018.基于PCA-BP神经网络在爆破振动评价要素中的预测及应用[J].矿业研究与开发38(12):97-102.

郭晓强,2021.基于爆破振动的极限边孔排距的确定方法研究[J].矿业研究与开发41(6):26-30.

何理,刘易和,李琳娜,等,2022.基于粒子群—最小二乘支持向量机模型的矿山爆破振动速度预测[J].金属矿山51(7):145-150.

胡晓冰,陈志远,魏格平,等,2020.基于BP神经网络的爆破振动预测系统[J].矿业研究与开发40(9):154-158.

史春宇,张志鸿,周杰,等,2023.不同角度结构面岩体的爆破振动传播特性研究[J].矿业研究与开发43(5):184-189.

王子一,吴桂义,罗畅,等,2023.多次爆破振动下陡边坡振动响应及稳定性研究[J].爆破40(3):158-169.

徐向东,陆瑜,2023.反映高差影响的爆破振动传播经验公式研究[J].自动化与仪器仪表,(6):63-66.

曾晓辉,张学民,戴斌,等,2023.考虑自由面数量和抵抗线影响的隧道爆破振速预测[J].中国安全生产科学技术19(6):83-89.

张西良,2020.岩体爆破环境效应预测的集成学习模型及工程应用[D].合肥:中国科学技术大学.

邹平,王亮,戴勇,等,2023.基于SSA-XGBoost的爆破振动预测系统的构建与应用[J].爆破40(3):199-205.

Outlines

/

[an error occurred while processing this directive]