Research on PPV Prediction Model of Open-pit Mine Based on PSO-XGBoost
Received date: 2024-01-11
Revised date: 2024-06-04
Online published: 2024-08-27
The peak particle velocity(PPV) resulting from blasting vibration serves as a crucial metric in assessing the efficacy of blasting and mining design parameters.To enhance the accuracy of PPV predictions,a novel parameter self-optimizing PSO-XGBoost prediction model is introduced,leveraging the Particle Swarm Optimization (PSO) algorithm in conjunction with optimized Extreme Gradient Boosting (XGBoost).The research focuses on the LK open-pit copper-cobalt mine and examines five influencing factors,namely the maximum single explosive charge,total explosive charge,measured distance to blast center,average depth of blastholes,and elevation difference,as study parameters.A total of 187 sets of measured data from on-site blasting operations are gathered for further investigation into predicting PPV using the PSO-XGBoost model.The findings indicate that the PSO-XGBoost prediction model produces superior prediction evaluation metrics (R2=0.921,RMSE=0.0752,MAE=0.0717,MBE=0.0683), compared to alternative models,including the traditional XGBoost model,the SSA-XGBoost hybrid optimization model,and the Sariakaliski empirical formula.The sensitivity analysis reveals that the total explosive charge,significantly influences PPV prediction outcomes,underscoring the importance of using an appropriate amount of explosives to avoid energy inefficiency in blasting activities. Furthermore,the research demonstrates that the PSO-XGBoost prediction model,is capable of effectively addressing the nonlinear attributes of various factors,as well as integrating nonlinear and discrete data to develop a dependable,straightforward,and efficient PPV prediction model.This study offers valuable insights for promptly predicting blasting vibration in open-pit mining and assessing the impacts of blasting activities.
Zhenyang LI , Baogang ZHANG , Xin XIONG , Chengye YANG , Yuqi BAI . Research on PPV Prediction Model of Open-pit Mine Based on PSO-XGBoost[J]. Gold Science and Technology, 2024 , 32(4) : 620 -630 . DOI: 10.11872/j.issn.1005-2518.2024.04.022
null | Deng Hongwei, Luo Liang,2023.PPV prediction model based on random forest optimized by SMA algorithm[J].Gold Science and Technology,31(4):624-634. |
null | Dong Donglin, Zhang Longqiang, Zhang Enyu,et al,2023.A rapid identification model of mine water inrush based on PSO-XGBoost[J].Coal Science and Technology,51(7):72-82. |
null | Fan Yong, Pei Yong, Yang Guangdong,et al,2022.Prediction of blasting vibration velocity peak based on an improved PSO-BP neural network[J].Journal of Vibration and Shock,41(16):194-200. |
null | Gou Qianqian, Zhao Mingsheng, Chi En’an,et al,2018.Prediction and application of evaluation factors in blasting vibration based on PCA-BP neural network[J].Mining Research and Development,38(12):97-102. |
null | Guo Xiaoqiang,2021.Study on the determination of the limit distance of boundary borehole based on blasting vibration[J].Mining Research and Development,41(6):26-30. |
null | He Li, Liu Yihe, Li Linna,et al,2022.Prediction of mine Blasting vibration velocity of mines based on particle swarm -least square support vector machine model[J].Metal Mines,51(7):145-150. |
null | Hong Z X, Tao M, Liu L L,et al,2023.An intelligent approach for predicting overbreak in underground blasting operation based on an optimized XGBoost model[J].Engineering Applications of Artificial Intelligence,126(2):1-16. |
null | Hu Xiaobing, Chen Zhiyuan, Wei Geping,et al,2020.Blasting vibration prediction system based on BP neural network[J].Mining Research and Development,40(9):154-158. |
null | Khandelwal M, Armaghani D J, Faradonbeh R S,et al,2017.Classification and regression tree technique in estimating peak particle velocity caused by blasting[J].Engineering with Computers,33:45-53. |
null | Li D T, Yan J L, Zhang L,2012.Prediction of blast-induced ground vibration using support vector machine by tunnel excavation[J].Applied Mechanics and Materials,170/171/172/173:1414-1418. |
null | Ma C L, Wang W H, Wang S X,et al,2023.Prediction of shear strength of RC slender beams based on interpretable machine learning[J].Structures,57:105171. |
null | Sadovsky M A,1952.Mechanical action of blast waves on data of experimental studies[J].Physics of Explosion,12(1):70-110. |
null | Shi Chunyu, Zhang Zhihong, Zhou Jie,et al,2023.Study on blasting vibration transmission characteristics of rock mass of structural planes with different angles [J].Mining Research and Development,43(5):184-189. |
null | Shirani Faradonbeh R, Jahed Armaghani D, Abd Majid M Z,et al,2016.Prediction of ground vibration due to quarry blasting based on gene expression programming:A new model for peak particle velocity prediction[J].International Journal of Environmental Science and Technology,13(6):1453-1464. |
null | Trabi B, Bleibinhaus F,2023.Blast vibration prediction[J].Geophysical Prospecting,71(7):1312-1324. |
null | Tyagi P, Sharma A, Semwal R,et al,2023.XGBoost odor prediction model:Finding the structure-odor relationship of odorant molecules using the extreme gradient boosting algorithm[J].Journal of Biomolecular Structure and Dynamics,12(2):1-15. |
null | Wang Ziyi, Wu Guiyi, Luo Chang,et al,2023.Study on vibration response and stability of steep slope under multiple blasting vibration[J].Blasting,40(3):158-169. |
null | Xu Xiangdong, Lu Yu,2023.Study on empirical formula of blasting vibration propagation reflecting the influence of height difference[J].Automation and Instrumentation,(6):63-66. |
null | Xuan G Q, Wu X Y,2023.Support vector regression optimized by black widow optimization algorithm combining with feature selection by MARS for mining blast vibration prediction[J].Measurement,218:113106. |
null | Yu Z, Li C Q, Zhou J,2023.Tunnel boring machine performance prediction using supervised learning method and swarm intelligence algorithm[J].Mathematics,11(20):4237. |
null | Zeng Xiaohui, Zhang Xuemin, Dai Bin,et al,2023.Prediction of tunnel blasting vibration velocity considering influence of number of free surfaces and resistance line[J].China Work Safety Science and Technology,19(6):83-89. |
null | Zhang Xiliang,2020.Ensemble Learning Model and Engineering Application of Environmental Effect Prediction of Rock Mass Blasting[D].Hefei:University of Science and Technology of China. |
null | Zhou J, Qiu Y G, Khandelwal M,et al,2021.Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations[J].International Journal of Rock Mechanics and Mining Sciences,145(1):104856. |
null | Zou Ping, Wang Liang, Dai Yong,et al,2023.Establishment and application of blasting vibration prediction system based on SSA-XGBoost [J].Blasting,40(3):199-205. |
null | 邓红卫,罗亮,2023.基于SMA算法优化随机森林的PPV预测模型[J].黄金科学技术,31(4):624-634. |
null | 董东林,张陇强,张恩雨,等,2023.基于PSO-XGBoost的矿井突水水源快速判识模型[J].煤炭科学技术,51(7):72-82. |
null | 范勇,裴勇,杨广栋,等,2022.基于改进 PSO-BP 神经网络的爆破振动速度峰值预测[J].振动与冲击,41(16):194-200. |
null | 苟倩倩,赵明生,池恩安,等,2018.基于PCA-BP神经网络在爆破振动评价要素中的预测及应用[J].矿业研究与开发,38(12):97-102. |
null | 郭晓强,2021.基于爆破振动的极限边孔排距的确定方法研究[J].矿业研究与开发,41(6):26-30. |
null | 何理,刘易和,李琳娜,等,2022.基于粒子群—最小二乘支持向量机模型的矿山爆破振动速度预测[J].金属矿山,51(7):145-150. |
null | 胡晓冰,陈志远,魏格平,等,2020.基于BP神经网络的爆破振动预测系统[J].矿业研究与开发,40(9):154-158. |
null | 史春宇,张志鸿,周杰,等,2023.不同角度结构面岩体的爆破振动传播特性研究[J].矿业研究与开发,43(5):184-189. |
null | 王子一,吴桂义,罗畅,等,2023.多次爆破振动下陡边坡振动响应及稳定性研究[J].爆破,40(3):158-169. |
null | 徐向东,陆瑜,2023.反映高差影响的爆破振动传播经验公式研究[J].自动化与仪器仪表,(6):63-66. |
null | 曾晓辉,张学民,戴斌,等,2023.考虑自由面数量和抵抗线影响的隧道爆破振速预测[J].中国安全生产科学技术,19(6):83-89. |
null | 张西良,2020.岩体爆破环境效应预测的集成学习模型及工程应用[D].合肥:中国科学技术大学. |
null | 邹平,王亮,戴勇,等,2023.基于SSA-XGBoost的爆破振动预测系统的构建与应用[J].爆破,40(3):199-205. |
/
〈 | 〉 |