Genesis of Jiangdong Gold Deposit in Wangu Gold Field,Northeast Hunan:Constraints from Fluid Inclusions and H-O Isotope
Received date: 2024-03-24
Revised date: 2024-05-07
Online published: 2024-08-27
The debate surrounding the source,properties and evolution of ore-forming fluids and the genesis of gold deposits in the Wangu area are still remains unresolved.To address this issue,the present study focuses on the Jiangdong gold deposit within the Wangu area,conducting a comprehensive analysis of quartz samples from different stages of the deposit.This analysis includes SEM-CL observation,microtemperature measurement of fluid inclusions,laser Raman spectroscopy,and H-O isotopic compositional analysis.Through examination of the relationship between the veins and the symbiotic combination between the minerals,four distinct mineralization stages have been identified.The mineralization stages at the study site are prioritized as follows: (1)quartz-scheelite stage,(2)quartz-pyrite stage,(3)quartz-pyrite-arsenopyrite-polymetallic sulfide stage,and (4)quartz-calcite stage,and the main mineralization stages are the second and third stages.Fluid inclusions within the quartz at each stage were categorized into three types,namely aqueous inclusions (TypeⅠ),aqueous and CO2 three-phase inclusions (TypeⅡ),and pure CO2 inclusions (TypeⅢ).The homogeneous temperatures of the four phases of fluid inclusions range from 264 ℃ to 347 ℃,255 ℃ to 329 ℃,194 ℃ to 271℃,and 157 ℃to 235 ℃ respectively,aand the salinities range from 2.82% to 8.56% NaCleqv,from 1.84% to 9.04% NaCleqv,from 2.24% to 11.23% NaCleqv,and from 1.87% to 8.71% NaCleqv.The H-O isotope analysis indicates that the ore-forming fluids in the Jiangdong gold deposit are predominantly sourced from magmatic fluids,likely associated with magmatic activities during the Yanshanian period.Fluid-rock interactions may have resulted in the early ore-forming fluids being influenced by partially metamorphic fluids.Over the course of mineralization from early to late stages,the composition of the ore-forming fluid transitioned from a medium-temperature and medium-low salinity H2O-NaCl-CO2 system to a medium-low temperature and medium-low salinity H2O-NaCl system.Gold is primarily transported in the form of Au(HS) within ore-forming fluids,with fluid immiscibility and fluids-rock reaction likely serving as the primary mechanisms for gold precipitation.When considering the geological characteristics of the Jiangdong gold deposit,along with fluid inclusion studies and H-O isotope data,it can be classified as a magmatic hydrothermal deposit associated with magmatic activity.
Zikun YUAN , Yongjun SHAO , Qingquan LIU , Yuce ZHANG , Zhilin WANG . Genesis of Jiangdong Gold Deposit in Wangu Gold Field,Northeast Hunan:Constraints from Fluid Inclusions and H-O Isotope[J]. Gold Science and Technology, 2024 , 32(4) : 559 -578 . DOI: 10.11872/j.issn.1005-2518.2024.04.081
我国科研人员发现2种新矿物——“氟碳钙钕矿”“菊兴铜矿”
8月16日,记者从中国地质调查局获悉,由我国科研人员发现、命名并申报的新矿物“氟碳钙钕矿”和“菊兴铜矿”分别获得国际矿物学协会—新矿物命名及分类委员会批准通过。
氟碳钙钕矿发现于内蒙古白云鄂博矿。内蒙古白云鄂博矿是世界最大的稀土矿床,也是我国矿物资源的宝库,迄今已发现210余种矿物,在我国新矿物发现地中占据首要位置。此次发现的氟碳钙钕矿是在该矿床发现的第21种新矿物。
钕作为当今稀土元素家族中的佼佼者,对促进稀土在永磁材料、激光材料等高新技术领域中的应用,发挥着极为重要的作用。此次新发现的氟碳钙钕矿属于钙稀土氟碳酸盐系列矿物,是常见的稀土矿物氟碳钙铈矿的富钕类似矿物,也是钕资源的重要矿物原料。
据了解,氟碳钙钕矿呈黄褐色至褐色,与方解石、萤石、霓石、钠闪石和磁铁矿等矿物共生,钕氧化物平均含量约为30%,稀土氧化物平均含量约为60%,且具有多型、体衍交生等复杂晶体微结构特征。
专家表示,氟碳钙钕矿的发现对丰富稀土氟碳酸盐矿物学基础理论知识,认识白云鄂博稀土元素赋存状态和替代机制,了解矿床的形成与演变、元素赋存状态、元素迁移和富集机制等具有重要意义。
菊兴铜矿发现于西藏甲玛世界级斑岩—矽卡岩型巨型铜多金属矿床中。菊兴铜矿主要产出于下白垩统林布宗组与中新世斑岩接触带形成的矽卡岩型铜多金属矿体中,共伴生金属矿物主要包括黄铜矿、方铅矿、辉钼矿、黄铁矿、蓝辉铜矿和辉铜矿,以及少量金—银矿物和含铋矿物(如硫铋铜矿)。该新矿物常在斑铜矿中呈固溶体产出,粒径多变化于数微米至100 μm之间。
菊兴铜矿为复杂金属硫化物,不透明,具金属光泽;反射色为浅黄白色,均质性,无双反射和反射多色性;理想晶体化学式为Bi6Cu140Fe30S125,等轴晶系,其晶体结构由硫、硫—铋原子层和不同比例空位的铜—铁原子层组成,与斑铜矿和黄铜矿的结构存在联系。
专家称,初步研究表明,菊兴铜矿是一种重要的载金载银矿物,结构复杂,其形成与中高温热液贵金属矿化密切相关。该矿物的发现不仅为硫化物矿物家族增添了新的一员,而且对于研究斑岩—矽卡岩型矿床的成矿物理化学条件与成矿作用过程具有重要的科学意义。
新京报)
http://www.goldsci.ac.cn/article/2024/1005-2518/1005-2518-2024-32-4-559.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
安江华,李杰,陈必河,等,2011.湘东北万古金矿的流体包裹体特征[J].华南地质与矿产,27:169-173.
|
柏道远,李彬,周超,等,2021.江南造山带湖南段金矿床成矿事件及其构造背景[J].岩石矿物学杂志,40(5):897-922.
|
曹创华,文春华,楼法生,等,2020.湖南省典型稀有金属矿床地球物理响应特征及物探找矿方法研究[J].大地构造与成矿学,44 (6):1096-1112.
|
董国军,许德如,王力,等,2008.湘东地区金矿床矿化年龄的测定及含矿流体来源的示踪——兼论矿床成因类型[J].大地构造与成矿学,32(4):482-491.
|
高林志,陈峻,丁孝忠,等,2011a.湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄——对武陵运动的制约[J].地质通报,30(7):1001-1008.
|
高林志,丁孝忠,庞维华,等,2011b.湘东北前寒武纪仓溪岩群变凝灰岩SHRIMP锆石U-Pb年龄[J].地质通报,30(10):1479-1484.
|
韩亮,丁俊英,范明森,等,2021.江南造山带中段正冲金矿矿床成因:来自流体包裹体和黄铁矿微量元素的证据[J].矿物岩石地球化学通报,40(2):382-389.
|
李建斌,张宗栋,王兵胜,等,2020.湖南省平江县江东金矿床地质特征及找矿标志[J].世界有色金属,(11):59-62.
|
李杰,陈必河,安江华,等,2011.湖南黄金洞金矿成矿流体包裹体特征[J].华南地质与矿产,27:163-168.
|
李鹏,李建康,裴荣富,等,2017.幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰:年代学依据[J].地球科学,42(10):1684-1696.
|
李银敏,柏道远,李彬,等,2024.湘东北燕山期动力学背景约束:金井地区花岗质侵入岩年代学和地球化学特征[J/OL].矿物岩石地球化学通报,43:1-21[2024-07-16].
|
刘育,张良,孙思辰,等,2017.湘东北杨山庄金矿床流体成矿机制[J].岩石学报,33(7):2273-2284.
|
柳德荣,吴延之,刘石年,1994.平江万古金矿床地球化学研究[J].湖南地质,(2):83-90.
|
卢焕章,2008.CO2流体与金矿化:流体包裹体的证据[J].地球化学,37(4):321-328.
|
卢焕章,池国祥,朱笑青,等,2018.造山型金矿的地质特征和成矿流体[J].大地构造与成矿学,42(2):244-265.
|
卢焕章,范宏瑞,倪培,等,2004.流体包裹体[M].北京:科学出版社.
|
罗献林,1988.论湖南黄金洞金矿床的成因及成矿模式[J].桂林冶金地质学院学报,8(8):225-240.
|
罗献林,1990.论湖南前寒武系金矿床的成矿物质来源[J].桂林冶金地质学院学报,10(1):13-26.
|
毛景文,李红艳,1997.江南古陆某些金矿床成因讨论[J].地球化学,26(5):71-81.
|
倪培,迟哲,潘君屹,等,2018.热液矿床的成矿流体与成矿机制——以中国若干典型矿床为例[J].矿物岩石地球化学通报,37:369-394.
|
邱正杰,范宏瑞,丛培章,等,2015.造山型金矿床成矿过程研究进展[J].矿床地质,34(1):21-38.
|
沈关文,张良,孙思辰,等,2022.江南造山带万古金矿床含金硫化物组构与金沉淀机制[J].岩石学报,38(1):91-108.
|
孙思辰,张良,吴圣刚,等,2018.江南造山带黄金洞金矿床成矿机制:矿物形成环境与金成矿物理化学条件制约[J].岩石学报,34(5):1469-1483.
|
陶诗龙,赖健清,宋维国,等,2015.湖南醴陵肖家山金矿地质特征及成矿条件研究[J].矿产与地质,29:195-202.
|
王若依,邵拥军,刘清泉,等,2024.江东金矿床黄铁矿矿物学和微量元素特征对成矿过程的指示[J].矿产勘查,15(5):708-723.
|
夏浩东,息朝庄,邓会娟,等,2017.湘东北黄金洞金矿床成因:硫、铅同位素和流体包裹体新证据[J].黄金,38(10):19-24.
|
许德如,董国军,邓腾,等,2015.湘东北地区大规模金成矿作用及地球动力学背景[J].矿物学报,35(增1):85.
|
许德如,邹凤辉,宁钧陶,等,2017.湘东北地区地质构造演化与成矿响应探讨[J].岩石学报,33(3):695-715.
|
闫馨云,焦建刚,董一博,等,2019.汉阴北部吴家湾金矿地质特征及流体包裹体研究[J].西北地质,52(4):182-193.
|
曾钦旺,刘云华,钱滔,等,2020.雪峰隆起带金矿成因新析[J].中国地质,47(4):914-931.
|
张笑天,孙景贵,韩吉龙,等,2023.吉林夹皮沟金矿集区三道岔金矿床成矿流体来源与演化——流体包裹体和H-O同位素的制约[J].吉林大学学报(地球科学版),53(3):748-766.
|
/
〈 |
|
〉 |