img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

Semi-supervised Ore Granularity Prediction Algorithm Incorporating Fully Supervised Learning

  • Zhihong JIANG ,
  • Ao CHEN
Expand
  • 1.Faculty of Mechatronic Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
    2.Jiangxi Mining and Metallurgy Electromechanical Engineering Technology Research Center, Ganzhou 341000, Jiangxi, China

Received date: 2024-01-31

  Revised date: 2024-04-11

  Online published: 2024-07-05

Abstract

Aiming at the problems that the improvement of the accuracy of ore particle size analysis in the ore dressing process depends on the number of labeled samples,and the application of the traditional fully supervised modeling method has poor generalization performance,a semi-supervised ore particle size prediction algorithm incorporating fully supervised learning was proposed.Taking the ore particle size data obtained by applying images on the ore transport belt as the research object,the ore particle size data was analyzed.Four kinds of ore particle size features namely,particle size,weighted arithmetic mean size,standard deviation and deviation coefficient was adopted as the input features.And three kinds of prediction models were established,namely,decision tree,GBDT and BP neural network.By stratified sampling of the original ore size labeled samples,a training set was constructed.Then use the semi-supervised learning to obtain the unlabeled image identification ore particle size samples pseudo-labels,screen out high-confidence pseudo-labeled samples,add the pseudo-labels judged by confidence to the original ore particle size label samples,expand the limited number of original labeled samples,and at the same time delete the corresponding samples in the unlabeled ore particle size samples.Finally,in order to improve the performance of the prediction mode,a new regression prediction model was constructed based on the expanded set of original labeled samples,.The ore particle size dataset obtained by sieving method was used to validate the semi-supervised prediction algorithm incorporating fully supervised learning.The results show that,compared with the traditional fully supervised modeling methods such as decision tree,ridge regression,Bayesian,etc.The model coefficient of determination of the semi-supervised prediction algorithm incorporating fully supervised learning reaches 92.1%,which is increased by 5%,5.4%,and 5.2%,respectively.The root-mean-square error is 0.023,which is reduced by 23.33%,23.33% and 20.69%,respectively,and the mean absolute error is 0.02,which is reduced by 23.08%,13.04% and 9.09%,respectively.The research shows that the prediction accuracy is significantly improved,which verifies the feasibility and reliability of the semi-supervised ore particle size prediction model incorporating fully supervised learning.It also provides a powerful technological support for the improvement of the accuracy of ore particle size detection,and further confirms the advantages of the semi-supervised learning,and provides a powerful technological support for the improvement of the accuracy of the semi-supervised learning.It further confirms the advantages of semi-supervised learning,provides new ideas and methods for the practical application of ore particle size prediction technology,and is expected to improve the production efficiency and quality control level in the process of ore processing and utilization.

Cite this article

Zhihong JIANG , Ao CHEN . Semi-supervised Ore Granularity Prediction Algorithm Incorporating Fully Supervised Learning[J]. Gold Science and Technology, 2024 , 32(3) : 539 -547 . DOI: 10.11872/j.issn.1005-2518.2024.03.040

References

null Chun F, Liu X M, Zhu X G,et al,2021.Numerical study on crushing law of iron ore under different impact velocity using CDEM[J].IOP Conference Series:Earth and Environmental Science,861(4):042069.DOI:10.1088/1755-1315/861/4/042069 .
null Hu S D, Miao D Q,PedryczW,2022.Multi granularity based label propagation with active learning for semi-supervised classification[J].Expert Systems with Applications,192:116276..
null Hu Yunqing, Qiu Qingying, Yu Xiu,et al,2020.Semi-supervised patent text classification method based on improved Tri-training algorithm[J].Journal of Zhejiang University (Engineering Science),54(2):331-339.
null Hu Z J, Yang Z Y, Hu X F,et al,2021.SimPLE:Similar pseudo label exploitation for semi-supervised classification[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),Nashville,TN,USA,15094-15103.DOI:10.1109/CVPR46437.2021.01485 .
null Huang Faming, Pan Lihan, Yao Chi,et al,2021.Landslide susceptibility prediction modelling based on semi-supervised machine learning [J].Journal of Zhejiang University(Engineering Science),55(9):1705-1713.
null Kang P, Kim D, Cho S,2016.Semi-supervised support vector regression based on self-training with label uncertainty:An application to virtual metrology in semiconductor manufacturing[J].Expert Systems with Applications,51:85-106.DOI:10.1016/j.eswa.2015.12.027 .
null Lan Fengchong, Pan Wei, Chen Jiqing,2023.Prediction of remaining useful life of real-world vehicle lithium-ion power battery based on Aseq2seq-PF[J].Automotive Engineering,45(12):2348-2356.
null Li Hongxiang, Wang Xiaoli, Yang Chunhua,et al,2021.Ore image segmentation method based on GAN-UNet[J].Control Theory and Applications, 38(9):1393-1398.
null Liu S S, Li S J,2022.A semi-supervised soft sensor method based on vine copula regression and tri-training algorithm for complex chemical processes[J].Journal of Process Control,120:115-128.
null Lu Jiawang,2023.Study on Complex Particle Swarm Space Image Reconstruction and Screening Performance Evaluation in Screening Process[D].Beijing:China University of Mining and Technology(Beijing).
null Mao Gengxuan, Tu Yan, Cui Wenbo,et al,2022.Hyperspectral inve-rsion of soil heavy metal mass concentration based on semi-supervised regression[J].Journal of Applied Sciences—Electronics and Information Engineering,40(6):941-952.
null Shi Xudong, Xiong Weili,2020.Semi-supervised gaussian process regression modeling based on improved self-training algorithm[J].Control Engineering of China,27(3):451-455.
null Song Jian, Wang Wenlong, Li Dong,et al,2022.Injection molded part size prediction method based on stacking integrated learning[J].Journal of South China University of Technology (Natural Science Edition),50(6):19-26.
null Sun Xingwei, Yang Tongtong, Yang Heran,et al,2023.Research on thermal error of CNC machine tool feed system based on CNN-GRU combined neural network[J].Chinese Journal of Scientific Instrumen,44(10):219-226.
null Wang Jianming, Ye Yurong, Rao Chaomin,et al,2023.Prediction on composite interface bonding strength between ceramsite lightweight aggregate concrete and normal concrete based on GBDT algorithm[J].Journal of Building Materials,26(2):150-155,171.
null Wang Wei, Li Qing, Zhang Dezheng, al el,2023.A survey of ore image processing based on deep learning[J].Chinese Journal of Engineering,45(4):621-631.
null Xu Wen, Tang Jian, Xia Heng,et al,2022.Soft sensor of dioxin emission concentration based on Bagging semi-supervised deep forest regression [J].Chinese Journal of Scientific Instrument,43(6):251-259.
null Xu Yongyang, Li Zixuan, Xie Zhong,et al,2020.Prediction of copper mineralization based on semi-supervised neural network [J].Earth Science,45(12):4563-4573.
null Zhang G H, Fan Y B, Yang R S,et al,2023.Influence of ore size on the production of micro-sized ore particles by high-pressure gas rapid unloading[J].Powder Technology,427(5):118716.DOI:10.1016/j.powtec.2023.118716 .
null Zhuang Huimin,2022.Research on Semi-Supervised Learning Based ARP Attack Detection Method in SDIIoT[D].Shanghai:Donghua University.
null 胡云青,邱清盈,余秀,等,2020.基于改进三体训练法的半监督专利文本分类方法[J].浙江大学学报(工学版),54(2):331-339.
null 黄发明,潘李含,姚池,等,2021.基于半监督机器学习的滑坡易发性预测建模[J].浙江大学学报(工学版),55(9):1705-1713.
null 兰凤崇,潘威,陈吉清,2023.基于Aseq2seq-PF的实车锂离子动力电池剩余使用寿命预测[J].汽车工程,45(12):2348-2356.
null 李鸿翔,王晓丽,阳春华,等,2021.基于GAN-UNet的矿石图像分割方法[J].控制理论与应用,38(9):1393-1398.
null 卢佳旺,2023.筛分过程复杂粒群空间图像重构与筛分效果评价研究[D].北京:中国矿业大学(北京).
null 毛耿旋,涂彦,崔文博,等,2022.基于半监督回归的高光谱土壤重金属质量浓度反演[J].应用科学学报,40(6):941-952.
null 史旭东,熊伟丽,2020.基于改进自训练算法的半监督GPR软测量建模[J].控制工程,27(3):451-455.
null 宋建,王文龙,李东,等,2022.基于Stacking集成学习的注塑件尺寸预测方法[J].华南理工大学学报(自然科学版),50(6):19-26.
null 孙兴伟,杨铜铜,杨赫然,等,2023.基于CNN-GRU组合神经网络的数控机床进给系统热误差研究[J].仪器仪表学报,44(10):219-226.
null 王建民,叶钰蓉,饶超敏,等,2023.基于GBDT算法的混凝土叠合面黏结强度预测分析[J].建筑材料学报,26(2):150-155,171.
null 王伟,李擎,张德政,等,2023.基于深度学习的矿石图像处理研究综述[J].工程科学学报,45(4):621-631.
null 徐雯,汤健,夏恒,等,2022.基于Bagging半监督深度森林回归的二噁英排放浓度软测量[J].仪器仪表学报,43(6):251-259.
null 徐永洋,李孜轩,谢忠,等,2020.基于半监督神经网络的铜矿预测方法[J].地球科学,45(12):4563-4573.
null 庄慧敏,2022.软件定义工业物联网下基于半监督学习的ARP攻击检测方法研究[D].上海:东华大学.
Outlines

/