Research on Size Effect and Directionality of Roughness of Natural Rock Fracture Surface
Received date: 2023-10-06
Revised date: 2024-01-31
Online published: 2024-05-21
To delve into the size-related effects and directional properties of the roughness on rock fracture surfaces,this paper focus on analyzing the roughness correction coefficient C within the refined formula of the cubic law,as it effectively characterizes the roughness of natural rock fractures. Since Louis first introduced the cubic law,numerous scholars have since proposed numerous modified formulas,including those by Zhang Youtian,Zimmerman,and Xiong et al. Through conversion,we acquire the calculation formula for the roughness correction coefficient and utilize collected natural fractures for related computations.High-precision 3D scanning technology was used to scan natural rock samples and acquire roughness data of fracture surfaces. By combining this data with publicly available high-precision CT scan data of rough rock fractures,we generate spatial coordinates.Both formulaic and numerical methods were used to calculate and analyze the roughness correction coefficient C. Using the formulaic approach,the roughness correction coefficient for sample sizes ranging from 10% to 100% of the fracture surface were calculated and varying results were obtained,which indicates that roughness exhibits a scale effect. According to the numerical method,a well-fitting ellipse was obtained,indicating that the roughness correction coefficient possesses directionality and can be expressed using tensor notation. This conclusion is further supported by calculating the JRC value of rough fractures and their surface and crack width fractal dimensions,revealing that the roughness of fracture surfaces exhibits scale effects and anisotropy. Upon further investigation,it is discovered that the roughness correction coefficient tensor or roughness tensor,when combined with average crack width,can be utilized to form a single crack permeability tensor that quantifies the rough surface in complex rough crack network models
Qianwei MEI , Gang CHEN , Fengqiang LUO , Ling MA , Hongsheng GONG , Yanzhu LONG . Research on Size Effect and Directionality of Roughness of Natural Rock Fracture Surface[J]. Gold Science and Technology, 2024 , 32(2) : 290 -305 . DOI: 10.11872/j.issn.1005-2518.2024.02.137
http://www.goldsci.ac.cn/article/2024/1005-2518/1005-2518-2024-32-2-290.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
陈刚,徐世光,马玲,等,2022.基于多尺度三维空间裂隙分布的粗糙岩体裂隙渗透性研究[M].北京:冶金工业出版社.
|
陈辉辉,高悦,郭凤娟,等,2023.岩石粗糙裂隙渗流试验模型研究[J].水电能源科学,41(1):137-141.
|
陈世江,朱万成,王创业,等,2017.岩体结构面粗糙度系数定量表征研究进展[J].力学学报,49 (2):239-256.
|
贺玉龙,陶玉敬,杨立中,2010.不同节理粗糙度系数单裂隙渗流特性试验研究[J].岩石力学与工程学报,29(增1):3235-3240.
|
蒋宇静,李博,王刚,等,2008.岩石裂隙渗流特性试验研究的新进展[J].岩石力学与工程学报,27(12):2377-2386.
|
鞠杨,张钦刚,杨永明,等,2013.岩体粗糙单裂隙流体渗流机制的实验研究[J].中国科学(技术科学),43(10):1144-1154.
|
刘日成,蒋宇静,李博,等,2014.岩体裂隙网络等效渗透系数方向性的数值计算[J].岩土力学,35(8):2394-2400.
|
刘卫群,王冬妮,苏强,2016.基于页岩储层各向异性的双重介质模型和渗流模拟[J].天然气地球科学,27(8):1374-1379.
|
覃源,张鑫,柴军瑞,等,2020.模拟不同节理粗糙度对单裂隙渗流的影响[J].应用力学学报,37(1):455-462,500.
|
王报,王媛,牛玉龙,2017.基于离散标准节理粗糙度系数曲线的粗糙单裂隙等效水力隙宽的确定[J].水电能源科学,35(4):77-80,62.
|
王刚,蒋宇静,李术才,2014.裂隙岩体应力渗流耦合特性及锚固理论[M].北京:科学出版社.
|
王珂,盛金昌,郜会彩,等,2020.应力—渗流侵蚀耦合作用下粗糙裂隙渗流特性研究[J].岩土力学,41(增1):30-40.
|
王媛,速宝玉,2002.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,13(1):61-68.
|
吴继敏,陈玲,孙少锐,等,2003.裂隙粗糙度系数及其分数维研究[J].河海大学学报(自然科学版),31(2):152-155.
|
熊祥斌,张楚汉,王恩志,2009.岩石单裂隙稳态渗流研究进展[J].岩石力学与工程学报,28(9):1839-1847.
|
张戈,田园,李英骏,2019.不同JRC粗糙单裂隙的渗流机理数值模拟研究[J].中国科学(物理学力学天文学),49(1):014701.
|
张有天,2005.岩石水力学与工程[M].北京:中国水利水电出版社.
|
钟振,闫金秀,徐从强,等,2021.粗糙单裂隙渗透性尺寸效应及其影响因素研究[J].水利水电技术,52(4):192-201.
|
周创兵,熊文林,1996.节理面粗糙度系数与分形维数的关系[J].武汉水利电力大学学报,29(5):1-5.
|
/
〈 |
|
〉 |