Influence of Forced-Exhaust Mixed Ventilation Parameters on the Cooling Effect of Artificial Cooling in High-temperature Blind Roadway
Received date: 2023-06-19
Revised date: 2023-12-06
Online published: 2024-03-22
With the increasing mining depth of metal mines,the problem of high temperature damage in mines is becoming more and more serious,which has become an urgent problem to be solved in deep mining of metal mines.At present,high-temperature mine cooling technology can be divided into two categories:Non-artificial refrigeration cooling technology and artificial refrigeration cooling technology.The latter can effectively solve the cooling problem of high-temperature mines,and is widely used in high-temperature mines at home and abroad.However,a large amount of heat will be generated during the operation of the artificial cooling equipment,which is easy to cause heat accumulation,thus affect the cooling effect.Therefore,it is a reasonable and feasible method to use the local ventilation system of the mine to discharge the heat generated by the operation of the cooling equipment.The high-temperature single-headed excavation roadway on the west side of the -20 m level of the north along the vein in the west section of the Dahongshan copper mine was taken as the research object,and numerical simulations were conducted by Fluent software to investigate the effects of the vent duct height,the distance of the exhaust vent duct lagging the forced vent duct and the exhaust forced ratio on the cooling effect of artificial cooling.The results show that the height of forced vent duct has an obvious influence on the cooling effect,and the optimal height is 1.0 m.The cooling effect is the best when the height of exhaust vent duct is equal to that of forced vent duct,and the optimal height is 1.0 m.The distance between exhaust vent duct and forced vent duct is too large,which is not conducive to cooling,and the optimal distance is 5.0 m.The exhaust forced ratio is too small or too large to form a good wind circulation in the driving drift,and the cooling effect is poor,the optimal exhaust forced ratio is 2.0.The research results can provide guidance for the selection of artificial cooling parameters for high temperature mine ventilation assisted cooling.
Jielin LI , Yiliang LIU , Yupu WANG , Zaili LI , Keping ZHOU , Chunlong CHENG . Influence of Forced-Exhaust Mixed Ventilation Parameters on the Cooling Effect of Artificial Cooling in High-temperature Blind Roadway[J]. Gold Science and Technology, 2024 , 32(1) : 63 -74 . DOI: 10.11872/j.issn.1005-2518.2024.01.092
天津地质调查中心发现自然界最富铈的硅酸盐矿物——倪培石
据1月18日消息,经国际矿物学学会新矿物命名与分类专业委员会(IMA-CNMNC)评审投票,由中国地质调查局天津地质调查中心曲凯课题组联合国际研究小组申请的新矿物获得正式批准,中文名为倪培石,英文名为Nipeiite-(Ce)。
据介绍,倪培石是稀土硅酸盐矿物,属于硅铈石矿物超族,三方晶系。该矿物以南京大学地球科学与工程学院倪培教授命名,致敬他长期以来在钨、锡多金属以及稀有、稀土矿床研究领域的卓越成就。
据悉,倪培石发现于河南省西峡县太平镇稀土矿,颜色为浅红至红棕色,单偏光下为灰白色,呈半透明—透明玻璃光泽,性脆,贝壳状断口,计算密度为4.943 g/cm3,是目前在自然界中发现的最富铈的硅酸盐矿物。倪培石是天津地质调查中心新矿物研究团队继太平石之后在河南太平镇稀土矿中发现的第二个自然界新矿物。倪培石和太平石作为罕见的稀土硅酸盐矿物,常与同样罕见的稀土氟化物共生,它们被认为是稀土碳酸盐矿物(稀土矿的主要矿石矿物)的前体,对于探讨稀土矿床早期成矿流体的性质以及后期稀土元素的迁移和沉淀机制具有重要研究价值。
倪培石也是我国科研团队在自然界中发现并经由国际矿物学会正式批准的第3个硅铈石超族新矿物。3个硅铈石超族新矿物分别为:太平石、嫦娥石和倪培石。倪培石的发现,特别是其独特的化学成分与晶体结构特征,打破了之前硅铈石超族的分类命名体系,因此 IMA-CNMNC邀请课题组负责人参加对硅铈石超族分类命名方案的修订工作。修订后的新方案对该族的矿物定义、晶体化学通式以及独立结晶学占位进行了系统规范与详细解读,并将我国的“太平石”升级为矿物亚族,作为硅铈石超族中富氟端元矿物种的词根,丰富了具有中国文化特色的矿物命名方案,提高了我国在国际新矿物研究领域的影响力。
该发现由中国地质调查局天津地质调查中心牵头,南京大学、意大利帕多瓦大学、意大利比萨大学、捷克马萨里克大学、俄罗斯科学院费斯曼矿物学博物馆、中国地质大学(北京)、核工业北京地质研究院与河南省核技术应用中心的科研团队共同参与完成。相关研究得到了国家自然科学基金、国家留学基金和中国地质调查项目的联合资助。
中国自然资源报)
http://www.goldsci.ac.cn/article/2024/1005-2518/1005-2518-2024-32-1-63.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
鲍建桥,郭红,石明辉,2022.基于FLUENT动网格的动压轴承特性改进算法[J].现代制造工程,(7):104-107,182.
|
蔡美峰,薛鼎龙,任奋华,2019.金属矿深部开采现状与发展战略[J].工程科学学报,41(4):417-426.
|
陈才贤,黄寿元,李刚,等,2011.混合式局部通风独头巷道热环境数值模拟研究[J].矿业安全与环保,38(4):4-7,93.
|
陈浩,2019.深部矿井煤岩体注水与通风方式下降温效果与热舒适研究[D].湘潭:湖南科技大学.
|
初砚昊,柳静献,常德强,等,2020.基于热管输热的矿井地热危害控制试验研究[J].金属矿山,49(1):108-114.
|
杜翠凤,徐喆,唐占信,等,2016.掘进巷道通风降温的数值模拟及影响因素分析[J].金属矿山,45(2):151-155.
|
龚剑,胡乃联,林荣汉,等,2015.掘进巷道压入式通风粉尘运移规律数值模拟[J].有色金属(矿山部分),67(1):65-68.
|
郭对明,李国清,侯杰,等,2022.基于FLUENT的深井掘进巷道局部通风参数优化[J].黄金科学技术,30(5):753-763.
|
侯江丽,伍玲玲,罗旭照,等,2020.基于直膨式热泵技术的深井集热降温实验系统[J].有色金属工程,10(3):62-68.
|
李杰林,程春龙,周科平,等,2022.高温独头巷道人工制冷降温效果的优化研究[J].中国安全生产科学技术,18(10):238-244.
|
李杰林,喻晓丽,黄冲红,等,2021.高温矿井掘进工作面冰块降温数值模拟研究[J].中国安全生产科学技术,17(8):97-103.
|
李勇,褚召祥,姬建虎,等,2014.掘进巷道风流流场和温度场数值模拟[J].煤炭科学技术,42(增1):142-145,148.
|
李孜军,徐宇,贾敏涛,等,2021.深部矿井岩层地热能协同开采治理热害数值模拟[J].中南大学学报(自然科学版),52(3):671-680.
|
罗勇东,王海宁,张迎宾,2020.矿井高温掘进巷道降温技术研究及应用[J].有色金属科学与工程,11(1):85-91.
|
宋东平,周西华,李景阳,等,2017.高温矿井液态CO2相变制冷降温技术[J].煤炭科学技术,45(10):82-87.
|
辛嵩,刘尚校,张逍,等,2020.不同通风参数对掘进工作面降温的影响[J].煤矿安全,51(10):112-117.
|
朱海亮,柳静献,常德强,等,2020.热泵与动力热管复合的深井热害控制试验研究[J].金属矿山,49(1):101-107.
|
/
〈 |
|
〉 |