Influence of Forced-Exhaust Mixed Ventilation Parameters on the Cooling Effect of Artificial Cooling in High-temperature Blind Roadway
Received date: 2023-06-19
Revised date: 2023-12-06
Online published: 2024-03-22
With the increasing mining depth of metal mines,the problem of high temperature damage in mines is becoming more and more serious,which has become an urgent problem to be solved in deep mining of metal mines.At present,high-temperature mine cooling technology can be divided into two categories:Non-artificial refrigeration cooling technology and artificial refrigeration cooling technology.The latter can effectively solve the cooling problem of high-temperature mines,and is widely used in high-temperature mines at home and abroad.However,a large amount of heat will be generated during the operation of the artificial cooling equipment,which is easy to cause heat accumulation,thus affect the cooling effect.Therefore,it is a reasonable and feasible method to use the local ventilation system of the mine to discharge the heat generated by the operation of the cooling equipment.The high-temperature single-headed excavation roadway on the west side of the -20 m level of the north along the vein in the west section of the Dahongshan copper mine was taken as the research object,and numerical simulations were conducted by Fluent software to investigate the effects of the vent duct height,the distance of the exhaust vent duct lagging the forced vent duct and the exhaust forced ratio on the cooling effect of artificial cooling.The results show that the height of forced vent duct has an obvious influence on the cooling effect,and the optimal height is 1.0 m.The cooling effect is the best when the height of exhaust vent duct is equal to that of forced vent duct,and the optimal height is 1.0 m.The distance between exhaust vent duct and forced vent duct is too large,which is not conducive to cooling,and the optimal distance is 5.0 m.The exhaust forced ratio is too small or too large to form a good wind circulation in the driving drift,and the cooling effect is poor,the optimal exhaust forced ratio is 2.0.The research results can provide guidance for the selection of artificial cooling parameters for high temperature mine ventilation assisted cooling.
Jielin LI , Yiliang LIU , Yupu WANG , Zaili LI , Keping ZHOU , Chunlong CHENG . Influence of Forced-Exhaust Mixed Ventilation Parameters on the Cooling Effect of Artificial Cooling in High-temperature Blind Roadway[J]. Gold Science and Technology, 2024 , 32(1) : 63 -74 . DOI: 10.11872/j.issn.1005-2518.2024.01.092
null | Bao Jianqiao, Guo Hong, Shi Minghui,2022.Improved algorithm of the hydrodynamic bearing based on FLUENT dynamic mesh[J].Modern Manufacturing Engineering,(7):104-107,182. |
null | Cai Meifeng, Xue Dinglong, Ren Fenhua,2019.Current status and development strategy of metal mines [J].Chinese Journal of Engineering,41(4):417-426. |
null | Chen Caixian, Huang Shouyuan, Li Gang,et al,2011.Numerical simulation study on thermal environment in a blind heading with combined local ventilation[J].Mining Safety and Environmental Protection,38(4):4-7,93. |
null | Chen Hao,2019.Study on Cooling Effect and Thermal Comfort of Water Injection and Ventilation in Coal and Rock Mass of Deep Mine [D].Xiangtan:Hunan University of Science and Technology. |
null | Chu Yanhao, Liu Jingxian, Chang Deqiang,et al,2020.Experimental study on the mine geothermal hazard control based on heal transfer by heat pipe[J].Metal Mine,49(1):108-114. |
null | Du Cuifeng, Xu Zhe, Tang Zhanxin,et al,2016.Numerical simulation of ventilation and cooling in excavation roadway and analysis of influencing factors[J].Metal Mine,45(2):151-155. |
null | Gong Jian, Hu Nailian, Lin Ronghan,et al,2015.Numerical simulation on dust migration law in excavation roadway with forced ventilation[J].Nonferrous Metals(Mining Section),67(1):65-68. |
null | Guo Duiming, Li Guoqing, Hou Jie,et al,2022.Optimization of local ventilation parameters of deep mine excavation roadway based on FLUENT [J].Gold Science and Technology,30(5):753-763. |
null | Hou Jiangli, Wu Lingling, Luo Xuzhao,et al,2020.A cooling and heat-collecting experimental system in deep mine based on direct expansion ground-coupled heat pump [J].Nonferrous Metals Engineering,10(3):62-68. |
null | Li J L, Yu X L, Huang C H,et al,2022.Research on the mobile refrigeration system at a high temperature working face of an underground mine[J].Energies,15(11):1-15. |
null | Li Jielin, Cheng Chunlong, Zhou Keping,et al,2022.Study on optimization of artificial refrigeration cooling effect in high-temperature blind roadway[J].Journal of Safety Science and Technology,18(10):238-244. |
null | Li Jielin, Yu Xiaoli, Huang Chonghong,et al,2021.Numerical simulation of ice cooling in heading face of high-temperature mine[J].Journal of Safety Science and Technology,17(8):97-103. |
null | Li Yong, Chu Zhaoxiang, Ji Jianhu,et al,2014.Numerical simulation of airflow and temperature field in excavation roadway[J].Coal Science and Technology,42(Supp.1):142-145,148. |
null | Li Zijun, Xu Yu, Jia Mintao,et al,2021.Numerical simulation on heat hazard control by collaborative geothermal exploitation in deep mine [J].Journal of Central South University(Science and Technology),52(3):671-680. |
null | Liu G L, Liu H Q, Chen F,et al,2022a.The effect of environmental variables and metabolic rate on physiological parameters in a hot and humid mine[J].Science and Technology for the Built Environment,28(4):451-466. |
null | Liu J J, Zhang Y, Chen S Q,et al,2022b.Simulation study of gas explosion propagation law in coal mining face with different ventilation modes[J].Frontiers in Energy Research,10:1-13. |
null | Luo Yongdong, Wang Haining, Zhang Yingbin,2020.Research and application of cooling technology in roadway driving in the mine at high temperature [J].Nonferrous Metals Science and Engineering,11(1):85-91. |
null | Song Dongping, Zhou Xihua, Li Jingyang,et al,2017.Liquid carbon dioxide phase-change refrigeration and cooling technology of high temperature mine [J].Coal Science and Technology,45(10):82-87. |
null | Wang W H, Zhang C F, Yang W Y,et al,2019.In situ measurements and CFD numerical simulations of thermal environment in blind headings of underground mines[J].Processes,7(5):1-21. |
null | Xin S, Wang W H, Zhang N N,et al,2021.Comparative studies on control of thermal environment in development headings using force/exhaust overlap ventilation systems [J].Journal of Building Engineering,38:1-14. |
null | Xin Song, Liu Shangxiao, Zhang Xiao,et al,2020.Influence of different ventilation parameters on cooling of driving face[J].Safety in Coal Mines,51(10):112-117. |
null | Yao W J, Pang J Y, Ma Q Y,et al,2021.Influence and sensitivity analysis of thermal parameters on temperature field distribution of active thermal insulated roadway in high temperature mine[J].International Journal of Coal Science and Technology,8(1):47-63. |
null | Zhu Hailiang, Liu Jingxian, Chang Deqiang,et al,2020.Experimental study on deep mine geothermal hazard control based on heat pump and power heat pipe[J].Metal Mine,49(1):101-107. |
null | 鲍建桥,郭红,石明辉,2022.基于FLUENT动网格的动压轴承特性改进算法[J].现代制造工程,(7):104-107,182. |
null | 蔡美峰,薛鼎龙,任奋华,2019.金属矿深部开采现状与发展战略[J].工程科学学报,41(4):417-426. |
null | 陈才贤,黄寿元,李刚,等,2011.混合式局部通风独头巷道热环境数值模拟研究[J].矿业安全与环保,38(4):4-7,93. |
null | 陈浩,2019.深部矿井煤岩体注水与通风方式下降温效果与热舒适研究[D].湘潭:湖南科技大学. |
null | 初砚昊,柳静献,常德强,等,2020.基于热管输热的矿井地热危害控制试验研究[J].金属矿山,49(1):108-114. |
null | 杜翠凤,徐喆,唐占信,等,2016.掘进巷道通风降温的数值模拟及影响因素分析[J].金属矿山,45(2):151-155. |
null | 龚剑,胡乃联,林荣汉,等,2015.掘进巷道压入式通风粉尘运移规律数值模拟[J].有色金属(矿山部分),67(1):65-68. |
null | 郭对明,李国清,侯杰,等,2022.基于FLUENT的深井掘进巷道局部通风参数优化[J].黄金科学技术,30(5):753-763. |
null | 侯江丽,伍玲玲,罗旭照,等,2020.基于直膨式热泵技术的深井集热降温实验系统[J].有色金属工程,10(3):62-68. |
null | 李杰林,程春龙,周科平,等,2022.高温独头巷道人工制冷降温效果的优化研究[J].中国安全生产科学技术,18(10):238-244. |
null | 李杰林,喻晓丽,黄冲红,等,2021.高温矿井掘进工作面冰块降温数值模拟研究[J].中国安全生产科学技术,17(8):97-103. |
null | 李勇,褚召祥,姬建虎,等,2014.掘进巷道风流流场和温度场数值模拟[J].煤炭科学技术,42(增1):142-145,148. |
null | 李孜军,徐宇,贾敏涛,等,2021.深部矿井岩层地热能协同开采治理热害数值模拟[J].中南大学学报(自然科学版),52(3):671-680. |
null | 罗勇东,王海宁,张迎宾,2020.矿井高温掘进巷道降温技术研究及应用[J].有色金属科学与工程,11(1):85-91. |
null | 宋东平,周西华,李景阳,等,2017.高温矿井液态CO2相变制冷降温技术[J].煤炭科学技术,45(10):82-87. |
null | 辛嵩,刘尚校,张逍,等,2020.不同通风参数对掘进工作面降温的影响[J].煤矿安全,51(10):112-117. |
null | 朱海亮,柳静献,常德强,等,2020.热泵与动力热管复合的深井热害控制试验研究[J].金属矿山,49(1):101-107. |
/
〈 | 〉 |