[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Study on Filling Pipeline Optimization Based on Full Pipe Transportation
Received date: 2023-08-24
Revised date: 2023-11-20
Online published: 2024-03-22
Mine filling technology is an important technical means for the construction of green mines,and full pipe transportation is a very important technology in the filling operation of underground metal mines.Full pipe transportation can minimize the contact area between filling slurry and air,reduce the impact on the filling pipeline,extend the service life of the filling pipeline,and improve the efficiency of mining filling operations.Aiming at the problem of the long distance between the newly discovered edge ore body and the filling station in Fankou lead-zinc mine and the high difficulty of transportation,the surface pipeline SL1 and underground pipeline L2-2 in the mine design plan were selected as the research objects to study the optimization plan of the filling pipeline in Fankou lead-zinc mine.Firstly,using theoretical formulas and based on the filling data of Fankou lead-zinc mine,the filling line and full pipe rate of SL1 pipeline and L2-2 pipeline were calculated when transporting graded tailings and fine tailings,respectively.The comparison was made using the optimal full pipe rate of 0.8 as the standard.The results show that both pipelines are in a state of under pipe when transporting graded tailings,and are in a state of over pipe when transporting fine tailings,which do not meet the optimal full pipe rate and need optimization.Secondly,through formula derivation and calculation,the ideal horizontal pipe diameter and the hydraulic slope after diameter change when transporting different slurry were obtained.Finally,numerical simulation was used to verify the calculation results of pipe diameter optimization.A pipeline model was constructed using CFD.The vertical pipeline was taken as 5 m,the horizontal pipeline was 23 m,the total length of the pipeline was 28 m,and the curvature radius at the bend of the pipeline was 0.55 m.The horizontal pipe diameter was changed.Fluent software was used to simulate the full pipe transportation before and after the diameter change,and key data such as flow velocity and full process resistance were obtained when transporting graded tailings and fine tailings.By comparing and analyzing the pressure of the pipeline and the maximum outlet flow rate,it is concluded that SL1 and L2-2 can transport graded tailings by gravity after optimizing the pipe diameter,while fine tailings can’t be transported by gravity.However,the pumping pressure is significantly reduced,so the calculation results are reasonable.Therefore,this optimization plan is relatively reasonable and has strong guiding significance for mining filling operations.
Zefeng XU , Xiuzhi SHI , Rendong HUANG , Wenzhi DING , Xin CHEN . Study on Filling Pipeline Optimization Based on Full Pipe Transportation[J]. Gold Science and Technology, 2024 , 32(1) : 160 -169 . DOI: 10.11872/j.issn.1005-2518.2024.01.122
http://www.goldsci.ac.cn/article/2024/1005-2518/1005-2518-2024-32-1-160.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
程海勇,吴爱祥,吴顺川,等,2022.金属矿山固废充填研究现状与发展趋势[J].工程科学学报,44(1):11-25.
|
|
戴兴国,李岩,张碧肖,2016.深井膏体降压满管输送数值模拟研究[J].黄金科学技术,24(3):70-75.
|
|
丁德强,2007.矿山地下采空区膏体充填理论与技术研究[D].长沙:中南大学.
|
|
郭沫川,谭玉叶,楚立申,等,2022.某铁矿管道自流输送分析及管道磨损研究[J].矿冶工程,42(5):39-43.
|
|
姜洪波,李世珺,姚锐,等,2018.深井矿山充填系统管路爆管问题的应对措施[J].中国矿山工程,47(1):7-9.
|
|
李向阳,张新国,曹忠,等,2011.满管自流膏体充填管路清洗技术研究及应用[J].山东科技大学学报(自然科学版),30(5):22-25.
|
|
李宗楠,罗皖东,郭利杰,等,2020.基于Buckingham方程的大倍线充填料浆输送优化与应用[J].黄金科学技术,28(1):90-96.
|
|
林天埜,2017.矸石似膏体充填料浆流动性能研究[D].北京:中国矿业大学(北京).
|
|
刘晓辉,吴爱祥,王洪江,等,2013.深井矿山充填满管输送理论及应用[J].北京科技大学学报,35(9): 1113-1118.
|
|
王新民,贺严,陈秋松,2014.基于Fluent的分级尾砂料浆满管流输送技术[J].科技导报,32(1): 53-58.
|
|
王玉山,郑伯坤,陈怀教,等,2019.金川二矿区自平衡充填料浆自流输送管道压力分布研究[J].采矿技术,19(3): 21-25.
|
|
吴迪,蔡嗣经,杨威,等,2012.基于CFD的充填管道固液两相流输送模拟及试验[J].中国有色金属学报,22(7):2133-2140.
|
|
夏志远,程海勇,吴顺川,等,2024.脉冲泵压环境膏体水分迁移转化与流变行为数值推演[J].工程科学学报,46(1):11-22.
|
|
杨雯雯,郭涛,杜涛,等,2021.盾构渣土环保处理系统流体技术研究及应用[J].隧道建设,41(增2):605-611.
|
|
尹升华,闫泽鹏,严荣富,等,2023.全尾砂—废石膏体流变特性及阻力演化[J].工程科学学报,45(1):9-18.
|
|
张德明,王新民,郑晶晶,等,2010.深井充填钻孔内管道磨损机理及成因分析[J].武汉理工大学学报,32(13): 100-105.
|
|
朱传明,丁文智,陈新,2022.凡口矿边缘矿体充填输送研究[J].有色金属工程,12(11):128-135.
|
/
| 〈 |
|
〉 |