[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Industrial Correlation Between Non-ferrous Metal Industry and Manufactu-ring Industry:Direction of Action,Degree of Correlation and Network Characteristics
Received date: 2022-10-12
Revised date: 2023-10-25
Online published: 2024-01-26
As the basic industry of the manufacturing industry,how the non-ferrous metal industry affects the manufacturing industry has become an important issue in both academia and industry. Using the input-output theory and complex network theory,an industrial correlation network between the non-ferrous metal industry and manufacturing industry was constructed based on the non-ferrous metal industry and manufacturing data in the input-output table from 2017 to 2020. The relative quantitative statistical analysis was conducted on the correlation characteristics and network structure of China’s non-ferrous metal industry at the current stage,and the industrial correlation between China’s non-ferrous metal industry and manufacturing industry was comprehensively analyzed from three aspects of action direction,correlation degree and network characteristics. The research results show that:(1)In the direction of action,the non-ferrous metal industry has a more obvious forward correlation with the downstream manufacturing industry,that is,the driving effect is greater than the pulling effect. (2)In the degree of correlation,among the top10 manufacturing sectors that have a significant direct consumption with the non-ferrous metal industry,the non-ferrous metal rolling and processing products sector has the most obvious correlation with the tansmission,distribution and control equipment sector.(3)In terms of network characteristics,within the non-ferrous metal industry,the non-ferrous metal mining and dressing department has stronger control capabilities but lacks the input and output of resources.The non-ferrous metal rolling processed products department is the core department of the non-ferrous metal industry,with the greatest value to the manufacturing industry. Within the manufacturing industry,the current role of the resource processing industry is obvious,and the core position of the mechanical and electronic manufacturing industry is on the rise.
Ligang LIU , Yadan HUANG . Industrial Correlation Between Non-ferrous Metal Industry and Manufactu-ring Industry:Direction of Action,Degree of Correlation and Network Characteristics[J]. Gold Science and Technology, 2023 , 31(6) : 990 -1003 . DOI: 10.11872/j.issn.1005-2518.2023.06.143
http://www.goldsci.ac.cn/article/2023/1005-2518/1005-2518-2023-31-6-990.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
安蕾,2020.中国1987—2017年度间动态投入产出表的编制及应用[D].昆明:云南财经大学.
|
|
陈红,2010.房地产业对吉林省地方经济发展贡献研究[D].长春:吉林建筑工程学院.
|
|
陈梦根,张鑫,2022.数字经济要素投入核算框架及应用研究[J].统计研究,39(08):3-20.
|
|
丁和根,2020.我国传媒产业关联及其演化趋势分析——基于投入产出表的实证研究[J].新闻与传播研究,27(11):57-75,127.
|
|
范金,万伟,袁小慧,等,2019.改革开放40年中国绿色增加值演化趋势与结构分解[J].中国人口·资源与环境,29(10):79-89.
|
|
黄先海,诸竹君,2021.生产性服务业推动制造业高质量发展的作用机制与路径选择[J].改革,(6):17-26.
|
|
贾明星,2019.七十年辉煌历程 新时代砥砺前行——中国有色金属工业发展与展望[J].中国有色金属学报,29(9):1801-1808.
|
|
李建军,任静一,2016.文化创意产业的产业关联与波及效应研究——基于上海市投入产出表的实证分析[J].上海经济研究,(11):90-101.
|
|
李连友,李宾,2012.基于投入产出方法的北京市文化创意产业对经济贡献分析[J].中央财经大学学报,(6):86-91.
|
|
李期,郑明贵,罗宇文,2022.中国稀土贸易安全研究(1992—2018)——基于复杂网络分析方法[J].稀土,43(1):147-158.
|
|
李威,杨子健,邹俊义,2009.加快有色金属产业调整 促进经济增长[J].宏观经济管理,(10):54-55.
|
|
林伟坚,张博文,汪卫华,2022.从全球气候变化、制造业产业升级、国家安全及材料基因工程维度探讨材料科学发展趋势[J].中国科学院院刊,37(3):336-342.
|
|
刘斌,魏倩,吕越,等,2016.制造业服务化与价值链升级[J].经济研究,51(3):151-162.
|
|
刘明凯,张红艳,王新宇,2020.广西有色金属产业链关联测度与发展路径规划研究[J].中国国土资源经济,33(12):65-74.
|
|
伦蕊,2020.中国高端制造企业竞争力生成的驱动因素与协同机制[J].深圳大学学报(人文社会科学版),37(6):83-94.
|
|
马若微,周萌,丁鑫,2023.危机时接管银行的选择与比较——基于银行间市场复杂网络模型的研究[J].财经理论与实践,44(2):2-8.
|
|
邵华明,马永谈,朱涛,2017.股票市场稳定性测度及其作用机制——基于复杂网络模型视角的分析[J].财经科学,(5):54-66.
|
|
司增绰,王雪峰,2015.商贸流通业成长的产业关联演变与关键路径识别——以我国住宿和餐饮业为例的研究[J].商业经济与管理,(2):18-26.
|
|
孙亚男,刘华军,刘传明,等,2016.中国省际碳排放的空间关联性及其效应研究——基于SNA的经验考察[J].上海经济研究,(2):82-92.
|
|
王铜安,2014.基于社会网络视角的产业结构总体特征研究[J].科研管理,35(7):124-129.
|
|
吴一丁,陈成,2013.有色金属行业财务特征分析及风险源研究[J].财会通讯,(14):120-122.
|
|
夏明,张红霞,2013.投入产出分析——理论、方法与数据[M].北京:中国人民大学出版社.
|
|
邢李志,2012.基于复杂网络理论的区域产业结构网络模型研究[J].工业技术经济,31(2):19-29.
|
|
许宪春,刘起运,2002.中国投入产出理论与实践[M].北京:中国统计出版社.
|
|
宣思源,余泳泽,2021.偏向型开放、财政分权与中国生产性服务业发展滞后[J].世界经济与政治论坛,(4):146-172.
|
|
荀阳,黄谦,曹美娟,等,2022.冲击解析及应对:新冠疫情影响下的体育产业高质量发展研究——基于产业关联结构的视角[J].成都体育学院学报,48(1):64-72.
|
|
杨瑾,解若琳,2020.颠覆式创新驱动装备制造业转型升级的关键影响因素及路径[J].中国科技论坛,(11):74-82,109.
|
|
袁小锋,桂卫华,陈晓方,等,2018.人工智能助力有色金属工业转型升级[J].中国工程科学,20(4):59-65.
|
|
张昊,2021.中国有色金属产业关联效应研究[J].世界有色金属,(13):176-177.
|
|
赵炳新,张江华,2013.产业网络理论导论[M].北京:经济科学出版社.
|
|
赵婧雯,2017.云南有色金属产业联动效应分析[D].昆明:云南财经大学.
|
|
赵婧雯,刘春学,张钦礼,2017.云南有色金属产业关联程度及影响分析[J].中国矿业,26(2):66-70.
|
|
赵哲,曾晨,程轶皎,2020.交通路网的空间外溢性对土地集约利用的影响——以京津冀城市群为例[J].经济地理,40(7):174-183.
|
|
周大鹏,2021.新发展格局下制造业服务化对中国企业海外并购的影响研究[J].世界经济研究,(8):107-119,137.
|
/
| 〈 |
|
〉 |