img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

Road Rockfall Detection in Mining Area Based on Weighted Bidirectional Feature Fusion

  • Qinghua GU ,
  • Yifan DU ,
  • Pingfeng LI ,
  • Dan WANG
Expand
  • 1.School of Resources Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China
    2.Xi’an Key Laboratory of Intelligent Industry Perception Computing and Decision Making, Xi’an 710055, Shaanxi, China
    3.Hongda Blasting Engineering Group Ltd. , Co. , Guangzhou 511300, Guangdong, China

Received date: 2023-08-22

  Revised date: 2023-11-28

  Online published: 2024-01-26

Abstract

With the booming development of big data and Internet of Things technology,traditional mines have developed to smart mines and intelligent mines,and unmanned technology has been gradually applied to mining areas.In order to solve the problem that the rockfall detection of unstructured road in open-pit mine area has complex environment,large difference in rockfall size and similar color between rockfall and unstructured road surface,a rockfall detection model of mining road based on weighted bidirectional feature fusion was proposed.First,the SimAM attention mechanism is added to the backbone network,this attention mechanism is different from the previous channel attention mechanism and spatial attention mechanism,it can effectively eliminate the interference of the background environment without adding additional parameters,so that the model can focus more on the target characteristics of rockfall.Second,the weighted bidirectional feature pyramid(BiFPN)structure was used to realize multi-scale feature fusion in the neck.Since the PANet structure in the YOLOv5s network model only adds or splice the characteristics of the pyramid structure in the melting process,the bidirectional feature weighting was combined with the bidirectional feature of the weight and adaptive adjustment to ensure that the network model attaches proper importance to the rock ebaissees different sizes and different levels and realizes the addition between the low-level position information and high-level semantic information for multiple cross-layer weighted feature fusion,thus enhancing the feature extracion ability of the model for rockfall of different sizes.Finally,the lightweight convolution GSConv module was introduced into the col,which can be used to process function cards at this time,not only reducing redundant information,but also avoiding compression.The GSConv lightweight convolution module is based on deep separable convolution(DSC),ordinary convolution(SC) and channel shuffle operation,which improves the detection speed of the model by effectively reducing the complexity of the model.The experimental results show that the average detection accuracy of this algorithm reaches 92.8%.and the detection speed reaches 63.1FPS.Compared with the current fastest R-CNN,YOLOv4-tiny,YOLOv7 and YOLOv5s algorithms,the average detection accuracy is increased by 17.0,13.6,3.4 and 2.5 percentiles,and the detection speed is increased by 32.2,1.4,14.6 and 2.6 FPS,respectively.Moreover,the model size of the algorithm is only 12.9 MB,which is easy to deploy on mobile devices.Therefore,the algorithm can realize the real-time and accurate detection of unstructured road rockfall in mining area,and ensure the safe driving of unmanned mining card.

Cite this article

Qinghua GU , Yifan DU , Pingfeng LI , Dan WANG . Road Rockfall Detection in Mining Area Based on Weighted Bidirectional Feature Fusion[J]. Gold Science and Technology, 2023 , 31(6) : 953 -963 . DOI: 10.11872/j.issn.1005-2518.2023.06.120

References

null Cao M C, Wang J M,2020.Obstacle detection for autonomous driving vehicles with multi-lidar sensor fusion[J].Journal of Dynamic Systems Measurement and Control,142(2):021007.
null Chen Ken, Ou Ou, Yang Changzhi,et al,2023.Rockfall detection method based on improved YOLOX[J].Computer Measurement and Control,31(11):53-59.
null Dong L H, Wang X R, Liu B Z,et al,2021.Information acquisition incentive mechanism based on evolutionary game theory[J].Wireless Communications and Mobile Computing,2021:5525791.DOI:https://doi.org/10.1155/2021/5525791 .
null Gao Qie, Li Denghua, Ding Yong,2024.A study on the rock block tracking algorithm that utilizes the M-DBT framework[J/OL].Hydro-Science and Engineering:1-13[2024-01-02]..
null Girshick R,2015.Fast R-CNN[C]//IEEE International Conference on Computer Vision(ICCV).Santiago:IEEE: 1580 1732.
null Girshick R, Donahue J, Darrell T,et al,2014.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vsion and PatternRecognition(CVPR).Columbus:IEEE: 14632381.DOI:10.1109/CVPR.2014.81 .
null Han K, Wang Y H, Tian Q,et al,2020.Ghostnet:More features from cheap operations[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE: 19874590.DOI: 10.1109/CVPR42600.2020.00165 .
null He K M, Zhang X Y, Ren S Q,et al,2015.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,37(9):1904-1916. DOI: 10.1109/TPAMI.2015. 2389824 .
null Li H L, Li J, Wei H B,et al,2022.Slim-neck by GSConv:A better design paradigm of detector architectures for autonomous vehicles[J].arXiv preprint arXiv:2206.02424.DOI:https://doi.org/10.48550/arXiv.2206.02424 .
null Lin T Y, Goyal P, Girshick R,et al,2017a.Focal loss for dense object detection[C]//IEEE International Conference on Computer Vsion(ICCV).Venice:IEEE: 19262330.DOI: 10.1109/TPAMI.2018.2858826 .
null Lin T Y, Dollár P, Girshick R,et al,2017b.Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vsion and Pattern Recognition(CVPR).Hawaii:IEEE: 17355379.DOI: 10.1109/CVPR.2017.106 .
null Liu B, Ding Z F, Tian L L,et al,2020.Grape leaf disease identification using improved deep convolutional neural networks[J].Frontiers in Plant Science,11:1082. DOI: https://doi.org/10.3389/fpls.2020.01082 .
null Liu B, Tian B H, Qiao J C,2022.Mine track obstacle detection method based on information fusion[C]//Journal of Physics:Conference Series.IOP Publishing,2229(1):012023. DOI: 10.1088/1742-6596/2229/1/012023 .
null Liu Linya, Wu Songying, Zuo Zhiyuan,et al,2021.Research on Rockfall detection method of mountain railway slope based on YOLOv3 algorithm[J].Computer Science,48(Supp.2):290-294.
null Liu W, Anguelov D, Erhan D,et al,2016.Ssd:Single shot multibox detector[C]//European Conference on Computer Vision(ECCV).Amsterdam:IEEE: 21-37.
null Liu Zixue, Wang Fubin, Yu Kai,2022.Research and implementa-tion of the railway rockfall detection based on modified YO-LOv3[J].High Speed Railway Technology,13(3):52-56,80.
null Lu Caiwu, Qi Fan, Ruan Shunling,2020.An open-pit mine roadway obstacle warning method integrating the object detection and distance threshold model[J].Opto-Electronic Engineering,47(1):40-47.
null More K S, Wolkersdorfer C,2023.Intelligent mine water management tools—eMetsi and machine learning GUI[J].Mine Water and the Environment,42(1):111-120.DOI:https://doi.org/10.1007/s10230-023-00917-7 .
null Patel N, Krishnamurthy P, Tzes A,et al,2021.Overriding learning-based perception systems for control of autonomous unmanned aerial vehicles[C]//International Conference on Unmanned Aircraft Systems (ICUAS).Athens:IEEE: 20916280.DOI: 10.1109/ICUAS51884.2021.9476881 .
null Redmon J, Farhadi A,2017.YOLO9000:Better,faster,stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu:IEEE: 17355115.DOI: 10.1109/CVPR.2017.690
null Ren S Q, He K M, Girshick R,et al,2017.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,39(6):1137-1149.
null Ruan Shunling, Li Shaobo, Lu Caiwu,et al,2021.Road negative obstacle detection in open-pit mines based on multi scale feature fusion[J].Journal of China Coal Society,46(Supp.2):1170-1179.
null Shi T D, Zhong D Y, Bi L,2021.A new challenge:Detection of small-scale falling rocks on transportation roads in open-pit mines [J].Sensors,21(10):3548. DOI: https://doi.org/10.3390/s21103548 .
null Tan M, Pang R, Le Q V,2020.EfficientDet:Scalable and efficient object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE: 19874970.DOI: 10.1109/CVPR42600.2020.01079 .
null Wang C Y, Bochkovskiy A, Liao H Y M,2021.Scaled-YOLOv4:Scaling cross stage partial network[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Nashville:IEEE: 21413564.DOI: 10.1109/CVPR46437.2021.01283 .
null Wang W S, Wang S, Zhao Y Q,et al,2023a.Real-time obstacle detection method in the driving process of driverless rail locomotives based on DeblurGANv2 and improved YOLOv4[J].Applied Sciences,13(6):3861. DOI: https://doi.org/10.3390/app13063861 .
null Wang C Y, Bochkovskiy A, Liao H Y M,2023b.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Vancouver:IEEE: 23611189.DOI: 10.1109/CVPR52729.2023.00721 .
null Wang Jie, Ye Mao, Ma Fengshan,2014.Design and implementation of the rockfall monitoring and warning system based on video image identification[J].Journal of Basic Science and Engineering,22(5):952-963.
null Yang L X, Zhang R Y, Li L D,et al,2021.Simam:A simple,parameter-free attention module for convolutional neural networks[C]//Proceedings of the 38th International Conference on Machine Learning.PMLR,139:11863-11874.
null 陈垦,欧鸥,杨长志,等,2023.基于改进YOLOX的落石检测方法[J].计算机测量与控制,31(11):53-59.
null 高切,李登华,丁勇,2024.基于M-DBT框架的岩质边坡落石跟踪算法研究[J/OL].水利水运工程学报:1-13[2024-01-02]..
null 刘林芽,吴送英,左志远,等,2021.基于YOLOv3算法的山区铁路边坡落石检测方法研究[J].计算机科学,48(增2):290-294.
null 刘孜学,王富斌,虞凯,2022.基于改进YOLOv3的铁路落石检测方法研究与实现[J].高速铁路技术,13(3):52-56,80.
null 卢才武,齐凡,阮顺领,2020.融合目标检测与距离阈值模型的露天矿行车障碍预警[J].光电工程,47(1):40-47.
null 阮顺领,李少博,卢才武,等,2021.多尺度特征融合的露天矿区道路负障碍检测[J].煤炭学报,46(增2):1170-1179.
null 王杰,叶茂,马凤山,等,2014.基于视频图像识别的崩塌落石监测预警系统设计与实现[J].应用基础与工程科学学报,22(5):952-963.
Outlines

/