img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

Application of Integrated Shaped Water Pressure Blasting Technology in Soft and Weak Surrounding Rock Tunnels

  • Huilian GAN ,
  • Xinwen JIANG ,
  • Zhiwei CHEN ,
  • Yongxin QIAO ,
  • Shuhua CHEN ,
  • Jianguo WANG
Expand
  • 1.YCIC Highway Construction Sixth Co. , Ltd. , Kunming 650100, Yunnan, China
    2.Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China

Received date: 2023-04-06

  Revised date: 2023-08-30

  Online published: 2024-01-26

Abstract

There are few rugged plains in southwest China,and tunnel construction plays an important role in southwest China.However,when the tunnel is excavated by blasting in grade Ⅳ and Ⅴ weak surrounding rock,the traditional continuous charge smooth blasting technology often has problems such as over-excavation,low footage rate and large fragmentation after blasting.In order to solve such problems,based on the principle and application status of shaped water pressure smooth blasting technology,an axial porous shaped charge tube was designed.The integrated shaped water pressure structure was formed by alternately arranging the water bag and cartridge in the tube with detonating cord and digital electronic detonator.Four kinds of tests were carried out in the Ⅳ surrounding rock area of Mengsheng tunnel in Yunnan Province,including continuous charge smooth blasting,water bag interval smooth blasting,air interval smooth blasting and shaped water pressure smooth blasting.In order to maintain comparability,15 holes at the vault position were selected for the four tests.The blasting effect was checked one hour after blasting,and the blasting technical indexes such as single cycle footage,half-hole rate and overbreak and underbreak were measured by using range finder,tape and benchmark.The test results show that the half-hole rates of continuous charge smooth blasting,water bag interval smooth blasting and air interval smooth blasting are 13%,45% and 38% respectively,and the footage of one cycle is 3.40 m,3.50 m and 3.45 m respectively.The surrounding rock of the contour surface is broken and there is overbreak and underbreak phenomenon,while the half-hole rate of the shaped water pressure smooth blasting with integrated charge structure is 62%.The contour of a test area with a cycle footage of 3.60 m is relatively flat,there is no obvious over-excavation phenomenon,and the gravel after blasting is small.The comparison between the control test groups verifies the superiority of the energy-gathering structure based on plastic pipe research and development.The field application shows that the new shaped water pressure blasting has a significant effect on the flatness control of the surrounding contour of the weak surrounding rock tunnel.While reducing the number of boreholes and the amount of explosives,it maintains the integrity of the surrounding rock.It is an environmentally friendly and energy-saving controlled blasting technology.

Cite this article

Huilian GAN , Xinwen JIANG , Zhiwei CHEN , Yongxin QIAO , Shuhua CHEN , Jianguo WANG . Application of Integrated Shaped Water Pressure Blasting Technology in Soft and Weak Surrounding Rock Tunnels[J]. Gold Science and Technology, 2023 , 31(6) : 944 -952 . DOI: 10.11872/j.issn.1005-2518.2023.06.053

References

null Che Yulong,2015.Study on the Mechanism of Irregular Cartridge and the Damage of Surrounding Rock[D].Beijing:China University of Mining and Technology(Beijing).
null He Guangyi,2021.Development of hydraulic blasting technology for tunnel excavation[J].Engineering Blasting,27(5):53-58.
null Huang B X, Liu C Y, Fu J H,et al,2011.Hydraulic fracturing after water pressure control blasting for increased fracturing [J].International Journal of Rock Mechanics and Mining Sciences,48(6):976-983.
null Li Huai, Sun Weixing, Song Pengwei,et al,2023.Principle and application of shaped energy water pressure smooth blasting technology based on C-shaped energy-concentrating tube[J].Explosive Materials,52(1):50-57.
null Li Jiye, Zhang Jianxing, He Xinggui,et al,2020.Application of smooth blasting of water cushioning and sealing technology in tunnel excavation[J].Blasting,37(1):74-80.
null Li Jingguo, Yang Kui,2020.Application of second generation smooth blasting technology of cumulative energy pipe with water pressure in Xiaguili tunnel[J].Modern Tunnelling Technology,57(Supp.1):1035-1041.
null Li Qiyue, Zhao Xinhao, Wei Xin’ao,et al,2019.Study and application of contour control blasting technology for large section tunnel[J].Gold Science and Technology,27(3):350-357.
null Li Wei, Yuan Shaoguo, Gao Wenlei,2019.Study on smooth blasting by shaped water pressure in rock roadway excavation[J].Coal Technology,38(6):25-27.
null Li Zeng’en,2021.Research and application of cumulative energy hydraulic blasting technique in tunneling[J].Journal of Hunan Institute of Engineering(Natural Science Edition),31(2):84-87.
null Liu Dunwen, Jiang Shulin, Tang Yu,et al,2021.Research on smooth blasting technology of tunnel passing through broken vein fault[J].Engineering Blasting,27(2):79-84.
null Liu Haibo,2019.Application of the new techniques of energy-collecting hydraulic smooth blasting in the construction of Chengdu-Lanzhou railway tunnel[J].Modern Tunnelling Technology,56(2):182-187.
null Liu Haibo, Bai Zonghe, Liu Xuepan,et al,2017.New technology application of tunnel excavation shaped hydraulic smooth blasting [J].Engineering Blasting,23(1):81-84.
null Myasnikov V P, Guzev M T,2000.Thermo mechanical model of elastic-plastic materials with defect structures[J].Theoretical and Applied Fracture Mechanics,33(3):165-167.
null Song Pengwei, Yang Xin’an, Li Huai,et al,2022.Optimization of charge structure of peripheral blasting holes based on shaped energy water pressure smooth blasting technology[J].Tunnel Construction,42(1):103-112.
null Sun Yuhao, Xing Pengfei, Wu Yahua,et al,2021.Study on practice and application of controlled blasting by hydraulic energy gathering in surrounding holes of tunnel excavation[J].Construction Quality,39(11):50-53,57.
null Trivedi R, Singh T N, Raina A K,2014.Prediction of blast-induced fly rock in Indian limestone mines using neural networks [J].Journal of Rock Mechanics and Geotechnical Engineering,6(5):447-454.
null Wang Jianguo, Lei Lugang, Zhang Dandan,et al,2022.Research progress of shaped charge hydraulic blasting technology[J].Industrial Minerals and Processing,51(11):32-37.
null Wang Wangyang,2019.Study on Rock Breaking Mechanism and Parameter Optimization of Cumulative Hydraulic Controlled Blasting in Tunnel[D].Nanning:Guangxi Univer-sity.
null Wang Yanbing, Li Shuxuan, Geng Yanjie,et al,2023.Directional fracture mechanism and surrounding rock damage characteristics of slotted cartridge blasting[J].Chinese Journal of Engineering,45(4):521-532.
null Wu Bo, Li Hualong, Meng Guowang,et al,2022.Numerical analysis and application of elliptical bipolar linear energy-gathering hydraulic control blasting based on SPH-FEM[J].Journal of Railway Engineering Society,39(3):87-93.
null Xiong Xiaochen,2020.Design of drilling and blasting parameters for hard rock mine tunnel construction by rock drilling jumbo[J].China Mining Magazine,29(6):117-120,126.
null Xiong Yanlin, Zhong Yupei, Qi Yanjun,et al,2019.Simulation test of shaped charge blasting in shaping control of tunnel excavation[J].Explosive Materials,48(4):54-59.
null Yan Hailun,2020.Research and Application of Gathering Water Pressure Smooth Surface Blasting of Long and Large Mountain Tunnel[D].Qingdao:Shandong University of Science and Technology.
null Zhang Yuming, Yuan Yongfeng, Zhang Qi,2001.The slit-charge breaking rock mechanism and application[J].Explosive Materials,30(5):5-8.
null 车玉龙,2015.异形药包爆破作用机理及对围岩的损伤效应研究[D].北京:中国矿业大学(北京).
null 何广沂,2021.隧道掘进水压爆破技术发展[J].工程爆破,27(5):53-58.
null 李淮,孙卫星,宋鹏伟,等,2023.基于C型聚能管的聚能水压光面爆破技术原理及应用[J].爆破器材,52(1):50-57.
null 李继业,张剑兴,何兴贵,等,2020.水垫封光面爆破技术在隧道掘进中的应用研究[J].爆破,37(1):74-80.
null 李敬国,杨奎,2020.第二代聚能管水压光面爆破技术在下归里隧道的应用[J].现代隧道技术,57(增1):1035-1041.
null 李启月,赵新浩,魏新傲,等,2019.大断面隧道轮廓控制爆破技术研究与应用[J].黄金科学技术,27(3):350-357.
null 李伟,袁绍国,高文磊,2019.聚能水压光面爆破在岩巷掘进中的研究[J].煤炭技术,38(6):25-27.
null 李增恩,2021.隧道掘进聚能水压爆破技术的研究与应用[J].湖南工程学院学报(自然科学版),31(2):84-87.
null 刘敦文,江树林,唐宇,等,2021.穿越脉状破碎断层隧道光面爆破技术研究[J].工程爆破,27(2):79-84.
null 刘海波,2019.聚能水压光面爆破新技术在成兰铁路隧道施工中的应用[J].现代隧道技术,56(2):182-187.
null 刘海波,白宗河,刘学攀,等,2017.隧道掘进聚能水压光面爆破新技术与应用[J].工程爆破,23(1):81-84.
null 宋鹏伟,杨新安,李淮,等,2022.基于聚能水压光爆技术的周边眼装药结构优化研究[J].隧道建设,42(1):103-112.
null 孙余好,邢鹏飞,吴亚华,等,2021.隧洞掘进周边孔水压聚能控制爆破实践与应用研究[J].工程质量,39(11):50-53,57.
null 王建国,雷露刚,张丹丹,等,2022.聚能水压爆破技术研究进展[J].化工矿物与加工,51(11):32-37.
null 王汪洋,2019.隧道聚能水压控制爆破岩机理与参数优化研究[D].南宁:广西大学.
null 王雁冰,李书萱,耿延杰,等,2023.切缝药包爆破定向断裂机理及围岩损伤特性分析[J].工程科学学报,45(4):521-532.
null 吴波,李华隆,蒙国往,等,2022.椭圆双极线性聚能水压爆破数值分析及应用[J].铁道工程学报,39(3):87-93.
null 熊晓晨,2020.凿岩台车施工硬岩矿山巷道钻爆参数设计[J].中国矿业,29(6):117-120,126.
null 熊炎林,种玉配,齐燕军,等,2019.聚能爆破在隧道开挖成型控制中的仿真试验研究[J].爆破器材,48(4):54-59.
null 闫海伦,2020.长大山岭隧道聚能水压光面爆破研究与应用[D].青岛:山东科技大学.
null 张玉明,员永峰,张奇,2001.切缝药包破岩机理及现场应用[J].爆破器材,30(5):5-8.
Outlines

/