[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Fracture Performances of Bedding Structure Slate Under Dynamic Loading
Received date: 2023-04-19
Revised date: 2023-08-03
Online published: 2023-11-21
Bedding structure slate can be always observed in civil and mining engineering in recent years,their physical and mechanical properties are significantly controlled by the existing bedding planes,which are generally considered as weak links that can cause various geological disasters.The fracture behavior of bedding structure slate under dynamic loading is therefore a critical issue for the selection of blasting parameters,stability analysis of rock mass,collapse and burst disaster prevention in tunnel,drift,and other underground structures.In order to investigate the effects of the inclination angle of bedding plane and impact velocity on the dynamic fracture behavior of bedding structure slate,the dynamic impact test and numerical simulation method inserted cohesive element were conducted on the notched semicircular bending(NSCB) specimens by a split-Hopkinson pressure bar(SHPB)system.Tests of NSCB specimens under static loading were conducted for comparison,and the inserted cohesive element method was also used to develop the numerical model of layered NSCB specimens under dynamic loading.The fracture initiation and propagation process of the layered specimen under varied loading conditions were modeled.The results show:(1)Impact velocity and the inclination angle of bedding plane has obvious influence on the crack propagation,and three typical cracking paths can be found for NSCB specimens under both static and dynamic loading.(2)The crack propagates along the bedding plane and then directly propagates to the loading point,the cracking path evidently exhibits dependence on the impact velocity and the inclination angle of bedding plane.For specimens under static loading,the dominated crack is more likely to propagate along the bedding planes while the cracks tend to ignore bedding planes as the impact velocity or the inclination angle of bedding plane increases.At the same time,the crack length along the bedding plane is considerably reduced under dynamic loading than under static loading.(3)It is obvious that the impact velocity and the inclination angle of bedding plane have important influence on fracture toughness,it becomes larger with the increasing impact velocity or the inclination angle of bedding plane.
Yu ZHANG , Wenji WANG , Jiaqi SUN , Yonggang XIAO . Fracture Performances of Bedding Structure Slate Under Dynamic Loading[J]. Gold Science and Technology, 2023 , 31(5) : 803 -810 . DOI: 10.11872/j.issn.1005-2518.2023.05.058
http://www.goldsci.ac.cn/article/2023/1005-2518/1005-2518-2023-31-5-803.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
邓帅,朱哲明,王磊,等,2019.原岩应力对裂纹动态断裂行为的影响规律研究[J].岩石力学与工程学报,38(10):1989-1999.
|
宫凤强,王进,李夕兵,2018.岩石压缩特性的率效应与动态增强因子统一模型[J].岩石力学与工程学报,37(7):1586-1595.
|
李地元,高飞红,刘濛,等,2021.动静组合加载下含孔洞层状砂岩破坏机制探究[J].岩土力学,42(8):2127-2140.
|
李清,郭洋,田策,等,2016.不同角度裂纹缺陷对材料动态断裂行为的影响[J].科学技术与工程,16(28):1-5.
|
李响,怀震,李夕兵,等,2019.基于裂纹扩展模型的脆性岩石破裂特征及力学性能研究[J].黄金科学技术,27(1):41-51.
|
闻名,许金余,王浩宇,等,2017.低温—动荷载耦合作用下砂岩破坏断口的形貌分析[J].岩石力学与工程学报,36(增2):3822-3830.
|
肖福坤,王厚然,张睿,等,2018.不同冲击加载作用下砂岩的破碎特征[J].黑龙江科技大学学报,28(6):603-607.
|
杨立云,王青成,丁晨曦,等,2020.深部岩体中切槽爆破机理实验分析[J].振动与冲击,39(2):40-46.
|
张盛,王启智,谢和平,2008.岩石动态断裂韧度的尺寸效应[J].爆炸与冲击,28(6):544-551.
|
赵伏军,谢世勇,潘建忠,等,2011.动静组合载荷作用下岩石破碎数值模拟及试验研究[J].岩土工程学报,33(8):1290-1295.
|
赵光明,马文伟,孟祥瑞,2015.动载作用下岩石类材料破坏模式及能量特性[J].岩土力学,36(12):3598-3605.
|
周盛全,王瑞,田诺成,等,2022.冲击荷载作用下热处理花岗岩动态力学特性研究[J].黄金科学技术,30(2):222-232.
|
/
〈 |
|
〉 |