img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

Automatic Recognition Model of Microseismic Signal Based on Improved DCNN Method and Its Application

  • Yinan YANG ,
  • Jianhua HU ,
  • Tan ZHOU ,
  • Fengwen ZHAO ,
  • Mufan WANG
Expand
  • 1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2.Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, Fujian, China

Received date: 2023-03-21

  Revised date: 2023-09-11

  Online published: 2023-11-21

Abstract

In order to accurately identify mine microseismic signals,an improved deep convolutional neural network (DCNN) method was adopted.The spatial domain image of the original image superimposed by the spectrum map obtained by Fourier transform was used as the identification object of microseismic signals.An automatic identification and classification model of microseismic signals based on an improved DCNN method was proposed. The training set,verification set and test set of the IMS microseismic monitoring signal of a lead-zinc mine were established,and the reliability of the method was verified by actual engineering data. The results show that the automatic recognition model of microseismic signals with higher precision and better generalization ability is constructed by using the eigenvalues stacked on the BGR channel of the spectrum map and the spatial domain image as the input of DCNN,which can extract the features efficiently. By evaluating the F1 value,ROC curve and AUC value,the feasibility,effectiveness,and reliability of the improved method is verified.

Cite this article

Yinan YANG , Jianhua HU , Tan ZHOU , Fengwen ZHAO , Mufan WANG . Automatic Recognition Model of Microseismic Signal Based on Improved DCNN Method and Its Application[J]. Gold Science and Technology, 2023 , 31(5) : 794 -802 . DOI: 10.11872/j.issn.1005-2518.2023.05.046

References

null Cai Meifeng, Xue Dinglong, Ren Fenhua,2019.Current status and development strategy of metal mines[J]. Chinese Journal of Engineering,41(4):417-426.
null Dong L J, Tang Z, Li X B,et al,2020.Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform[J].Journal of Central South University,27(10):3078-3089.
null Fu Xuan, Huang Linqi, Chen Jiangzhan,et al,2022.Meeting the challenge of high geothermal ground temperature environment in deep mining—Research on geothermal ground temperature simulation platform of rock true triaxial testing machine[J].Gold Science and Technology,30(1):72-84.
null Gao Youwen, Zhou Benjun, Hu Xiaofei,2018.Research on image recognition of convolution neural network based on data enhancement[J].Computer Technology and Development,28(8):62-65.
null Gao Zhenyu,2018.Research and Application of Image Classification Method Based on Deep Convolutional Neural Network[D].Hefei:University of Science and Technology of China.
null Gentili S, Michelini A,2006.Automatic picking of P and S phases using a neural tree[J].Journal of Seismology,10(1):39-63.
null Hou Wei, Huo Haiying, Guo Xiaopeng,et al,2014.Research on microseismic monitoring and control technology of dynamic pressure in deep fully-mechanized top coal caving face[J].Coal Science and Technology,42(3):36-38.
null Hu J H, Zhou T, Ma S W,et al,2022.Rock mass classification prediction model using heuristic algorithms and support vector machines:A case study of Chambishi copper mine[J].Scientific Reports,12:928.doi:https://doi.org/10.1038/s41598-022-05027-y .
null Hu Naixun, Chen Tao, Zhen Na,et al,2021.Object-oriented open pit extraction based on convolutional neural network[J].Remote Sensing Technology and Application,36(2):265-274.
null Jiang Xinmeng,2017.Application and Research of Convolution Neural Network Based on Tensor Flow[D].Wuhan:Central China Normal University.
null Krizhevsky A, Sutskever I, Hinton G E,2012.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,60(6):84-90.
null Li Xibing, Zhou Jian, Wang Shaofeng,et al,2017.Review and practice of deep mining for solid mineral resources[J]. The Chinses Journal of Nonferrous Metals,27(6):1236-1262.
null Pang J M, Chen K, Shi J P,et al,2020.Libra R-CNN:Towards ba-lanced learning for object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).California:IEEE.doi:10.1109/CVPR.2019.00091 .
null Perol T, Gharbi M, Denolle M,2018.Convolutional neural network for earthquake detection and location[J].Science Advances,4(2):e1700578.
null Ross Z E, Meier M A, Hauksson E,et al,2018.Generalized seismic phase detection with deep learning[J].Bulletin of the Seismological Society of America,108(5A):2894-2901.
null Tian Xiao, Wang Mingjun, Zhang Xiong,et al,2022.Discrimination of earthquake and quarry blast based on multi-input convolutional neural network[J].Chinese Journal of Geophysics,65(5):1802-1812.
null Wang J, Teng T L,1995.Artificial neural network-based seismic detector[J].Bulletin of the Seismological Society of America,85(1):308-319.
null Wang Runpei,2020.Study on the Prediction of Deformation and Rock Pressure of Overburden Monitored by Distributed Optical Fiber Based on Machine Learning[D].Xi’an:Xi’an University of Science and Technology.
null Wei Mengyi, Tan Yuyang, Mao Zhonghua,et al,2018.Automatic microseismic event detection and arrival picking based on waveform cross-correlation[J].Acta Scientiarum Naturalium Universitatis Pekinensis,54(2):361-372.
null Wu Aixiang, Wang Yong, Zhang Minzhe,et al,2021.New development and prospect of key technology in underground mining of metal mines[J].Metal Mine,50(1):1-13.
null Wu Xiaoyang,2008.Detection and Tracking of Moving Object in Image Sequence Based on OpenCV[D].Hangzhou:Zhejiang University.
null Yang Chen,2018.Research on the Analysis of Underground Mine Microseismic Monitoring Signal [D].Wuhan:Wuhan University of Science and Technology.
null Yao Kaiyi, Li Yingyu,2018.Neural-network-based seismic phase automatic pickup method [J].Electronic Design Engineering,26(22):1-5.
null Yu Shibo, Yang Xiaocong, Yuan Ye,et al,2020.Research on destress effect of ground pressure control for the time-space mining sequence at depths[J].Gold Science and Technology,28(3):345-352.
null Zhang Minmin, Xu Heping, Wang Xiaojie,et al,2017.Application of Google TensorFlow machine learning framework[J].Cyber Security and Data Governance,36(10):58-60.
null Zhao Hongbao, Liu Rui, Gu Tao,et al,2021.Research on automatic picking method of microseismic signal P wave based on deep learning mode[J].Chinese Journal of Rock Mechanics and Engineering,40(Supp.2):3084-3097.
null Zhao Y, Takano K,1999.An artificial neural network approach for broadband seismic phase picking[J].Bulletin of the Seismological Society of America,89:670-680.
null Zhu Wei,2022.Research on Intelligent Identification Model of Microseismic and Blasting in Deep Mines[D].Changsha:Central South University.
null 蔡美峰,薛鼎龙,任奋华,2019.金属矿深部开采现状与发展战略[J].工程科学学报,41(4):417-426.
null 傅璇,黄麟淇,陈江湛,等,2022.迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J].黄金科学技术,30(1):72-84.
null 高友文,周本君,胡晓飞,2018.基于数据增强的卷积神经网络图像识别研究[J].计算机技术与发展,28(8):62-65.
null 高震宇,2018.基于深度卷积神经网络的图像分类方法研究及应用[D].合肥:中国科学技术大学.
null 侯玮,霍海鹰,郭晓朋,等,2014.深部综放工作面动压微震监测及控制技术研究[J].煤炭科学技术,42(3):36-38.
null 胡乃勋,陈涛,甄娜,等,2021.基于卷积神经网络的面向对象露天采场提取[J].遥感技术与应用,36(2):265-274.
null 姜新猛,2017.基于TensorFlow的卷积神经网络的应用研究[D].武汉:华中师范大学.
null 李夕兵,周健,王少锋,等,2017. 深部固体资源开采评述与探索[J].中国有色金属学报,27(6):1236-1262.
null 田宵,汪明军,张雄,等,2022.基于多输入卷积神经网络的天然地震和爆破事件识别[J].地球物理学报,65(5):1802-1812.
null 王润沛,2020.基于机器学习的分布式光纤监测覆岩变形矿压预测研究[D].西安:西安科技大学.
null 魏梦祎,谭玉阳,毛中华,等,2018.基于波形互相关的微地震事件自动识别及初至拾取[J].北京大学学报(自然科学版),54(2):361-372.
null 吴爱祥,王勇,张敏哲,等,2021.金属矿山地下开采关键技术新进展与展望[J].金属矿山,50(1):1-13.
null 吴晓阳,2008.基于OpenCV的运动目标检测与跟踪[D].杭州:浙江大学.
null 杨晨,2018.地下矿山微震监测信号分析研究[D].武汉:武汉科技大学.
null 姚开一,李英玉,2018.基于神经网络的地震震相自动拾取方法[J].电子设计工程,26(22):1-5.
null 于世波,杨小聪,原野,等,2020.深部区域采矿时序的地压调控卸荷效应研究[J].黄金科学技术,28(3):345-352.
null 章敏敏,徐和平,王晓洁,等,2017.谷歌TensorFlow机器学习框架及应用[J].网络安全与数据治理,36(10):58-60.
null 赵洪宝,刘瑞,顾涛,等,2021.基于深度学习模式的微震信号P波自动拾取方法研究[J].岩石力学与工程学报,40(增2):3084-3097.
null 朱玮,2022.深部矿山微震与爆破智能辨识模型研究[D].长沙:中南大学.
Outlines

/