img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

PPV Prediction Model Based on Random Forest Optimized by SMA Algorithm

  • Hongwei DENG ,
  • Liang LUO
Expand
  • School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China

Received date: 2023-02-20

  Revised date: 2023-04-19

  Online published: 2023-09-20

Abstract

The vibration caused by blasting is likely to cause instability and failure of facilities such as underground roadways,high and steep slopes in mining areas or ground buildings under dynamic action.Therefore,it is particularly important to predict the intensity of blasting vibration.The accurate prediction of peak particle velocity(PPV) is the premise of effectively controlling the vibration hazard of blasting engineering,but the current empirical formula for predicting the peak particle velocity is not accurate enough.Machine learning has obvious advantages in solving the problem of nonlinear relationship.In order to improve the prediction accuracy of the PPV prediction model,this study proposes to optimize the number of trees and the minimum number of leaf points in the random forest (RF)by slime mould algorithm (SMA) ,which overcomes the inability to obtain the optimal hyperparameters by using a single RF algorithm.Based on a dataset of 23 samples with four input parameters (minimum resistance line-r,height difference-H,maximum segment dose-Qmax,horizontal distance-W) and one output parameter(PPV) collected in an open-pit blasting engineering example,the combination of four parameters of these four parameters (Qmax-H-W-r、Qmax-H-r、Qmax-W-r、Qmax-r) was used as the input parameters in the RF algorithm,and then MAERMSEMEDEA and R2 evaluate the prediction effect of the SMA-RF model for four different input parameters to determine the optimal combination of parameters.In this model,the fitness function in SMA is defined as the root mean square error of the predicted value to enhance the robustness of the RF model.Then,the performance of SMA-RF model and unoptimized RF model and six empirical formulas commonly used in China and abroad were compared.The results show that the SMA-RF model has better prediction accuracy than the RF model,and the SMA-RF model has significantly better prediction effect than the six empirical formulas.In addition,Qmax-H-W-r can train the optimal SMA-RF model in the combination of four parameters,so it is recommended to be used to predict PPV in engineering practice.

Cite this article

Hongwei DENG , Liang LUO . PPV Prediction Model Based on Random Forest Optimized by SMA Algorithm[J]. Gold Science and Technology, 2023 , 31(4) : 624 -634 . DOI: 10.11872/j.issn.1005-2518.2023.04.026

References

null Breiman L,2001.Random forests[J].Machine Learning,45(1):5-32.
null Chen Yibing, Li Tianyi, Li Xinyan,et al,2022.Research on the relationship between typhoon precipitation cloud spectrum and precipitation based on random forest and remote sensing[J].Remote Sensing Technology and Application,37(5):1277-1288.
null Davies B, Farmer I W, Attewell P B,1964.Ground vibration from shallow sub-surface blasts[J].Engineer,217:553-559.
null Fan Yong, Pei Yong, Yang Guangdong,et al,2022.Prediction of blasting vibration velocity peak based on an improved PSO-BP neural network[J].Journal of Vibration and Shock,41(16):194-203,302.
null Guo Qinpeng, Yang Shijiao, Zhu Zhonghua,et al,2020.Predition of blasting vibration velocity using GA-BP neural network[J].Blasting,37(3):148-152.
null Guo H, Zhou J, Koopialipoor M,et al,2021.Deep neural network and whale optimization algorithm to assess flyrock induced by blasting[J].Engineering with Computers,37:173-186 .
null Hu X, Qu S,2018.A new approach for predicting bench blasting-induced ground vibrations:A case study[J].Journal of the Southern African Institute of Mining and Metallurgy,118(5):531-538.
null Jiang Nan, Zhou Chuanbo, Ping Wen,et al,2014.Altitude effect of blasting vibration velocity in rock slopes[J].Journal of Central South University(Science and Technology),45(1):237-243.
null Lee S L A, Kouzani A Z, Hu E J,2010.Random forest based lung nodule classification aided by clustering[J].Computerized Medical Imaging and Graphics,34(7):535-542.
null Li S, Chen H, Wang M,et al,2020.Slime mould algorithm:A new method for stochastic optimization[J].Future Generation Computer Systems,111:300-323.
null Li Xiaohan, Liu Kewei, Yang Jiacai,et al,2019.Analysis of blasting vibration effects under different ground stress[J].Gold Science and Technology,27(2):241-248.
null Lin H P, Ahmadianfar I, Amiri Golilarz N,et al,2022.Adaptive slime mould algorithm for optimal design of photovoltaic models[J].Energy Science and Engineering,10(7):2035-2064.
null Liu Qiang, Li Xibing, Liang Weizhang,2018.PCA-RF model for the classification of rock mass quality and its application[J].Gold Science and Technology,26(1):49-55.
null Luo Xiaofeng, Qiu Wei, Huang Wenlong,et al,2020. Correction of blasting vibration propagation attenuation formula under complex terrain based on dimensional theory[C]// Engineering Construction Collection of Pumped Storage Power Station.Beijing:China Water Resources and Hydropower Publishing House.
null Roy P P,1993.Putting ground vibration predictions into practice[J].Colliery Guardian,241(2):63-67.
null Siskind D E, Stagg M S, Kopp J W,et al,1980.Structure response and damage produced by ground vibration from surface mine blasting[R]. Washington:United States,Bureau of Mines.
null Tan Wenhui, Qu Shijie, Mao Shilong,et al,2010.Altitude effect of blasting vibration in slopes[J]. Chinese Journal of Geotechnical Engineering,32(4):619-623.
null Yang Lianbing, Chen Chunbo, Zheng Hongwei,et al,2021.Retrieval of soil salinity content based on random forests regression optimized by Bayesian optimization algorithm and gentic algorithm[J].Journal of Geo-information Science,23(9):1662-1674.
null Yang Youfa, Cui Bo,2009.Prediction of peak blasting velocity[J].Journal of Vibration and Shock,28(10):195-198,234-235.
null Zhang P, Yin Z Y, Jin Y F,et al,2020.A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest[J].Engineering Geology,265:105328.
null Zhang Yan, Wang Pengpeng,2022.Blasting vibration velocity prediction model based on RVM[J].Blasting,39(1):168-174.
null Zhao Huabing, Long Yuan, Song Kejian,et al,2012.Predictive methods and influence factors of blasting vibration velocity[J].Engineering Blasting,18(1):24-27.
null Zhou You, Chen Zuobin, Wang Jing,et al,2016.Effects of minimum burden on deep-hole rock blasting block size[J]. Engineering Blasting,22(6):70-74.
null 陈绎冰,李天依,李欣艳,等,2022.基于随机森林和遥感的台风降水云光谱与降水关系研究[J].遥感技术与应用,37(5):1277-1288.
null 范勇,裴勇,杨广栋,等,2022.基于改进PSO-BP神经网络的爆破振动速度峰值预测[J].振动与冲击,41(16):194-203,302.
null 郭钦鹏,杨仕教,朱忠华,等,2020.运用GA-BP神经网络对爆破振动速度预测[J].爆破,37(3):148-152.
null 蒋楠,周传波,平雯,等,2014.岩质边坡爆破振动速度高程效应[J].中南大学学报(自然科学版),45(1):237-243.
null 李萧翰,刘科伟,杨家彩,等,2019.不同地应力下爆破振动效应分析[J].黄金科学技术,27(2):241-248.
null 刘强,李夕兵,梁伟章,2018.岩体质量分类的PCA-RF模型及应用[J].黄金科学技术,26(1):49-55.
null 骆晓锋,邱伟,黄文龙,等,2020.基于量纲理论的复杂地形下爆破振动传播衰减公式修正[C]//抽水蓄能电站工程建设文集.北京:中国水利水电出版社.
null 谭文辉,璩世杰,毛市龙,等,2010.边坡爆破振动高程效应分析[J].岩土工程学报,32(4):619-623.
null 杨练兵,陈春波,郑宏伟,等,2021.基于优化随机森林回归模型的土壤盐渍化反演[J].地球信息科学学报,23(9):1662-1674.
null 杨佑发,崔波,2009.爆破振动速度峰值的预测[J].振动与冲击,28(10):195-198,234-235.
null 张研,王鹏鹏,2022.基于RVM的爆破振动速度预测模型[J].爆破,39(1):168-174.
null 赵华兵,龙源,宋克健,等,2012.爆破振动速度预测方法及其影响因素[J].工程爆破,18(1):24-27.
null 周游,陈作彬,王静,等,2016.最小抵抗线对深孔岩石爆破块度的影响[J].工程爆破,22(6):70-74.
Outlines

/