[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Characteristics of Cobalt-bearing Minerals in Hydrothermal Cobalt Deposits in Northeastern Hunan Province and Their Implication for Mineralization
Received date: 2022-09-13
Revised date: 2022-11-22
Online published: 2023-09-20
A series of hydrothermal cobalt polymetallic deposits in northeastern Hunan Province occurr along the Changsha-Pingjiang fault zone,the middle section of the Jiangnan orogen belt. These deposits are hosted in the tectonic-hydrothermal alteration belt at the footwall of the Changsha-Pingjiang fault zone,and controlled by the fault zone and its secondary structures.However,the occurrence state of cobalt and cobalt-containing minerals in the whole belt isn’t sufficient,which restricts the understanding of the metallogenic process of cobalt in the belt.The detailed mineralogical observation,TIMA analysis and EPMA showed that the pyrite is the main sulfide and also an important cobalt-containing mineral in the Hengdong deposit.It exhibits a complex textural characteristics,that is,the cobalt-rich pyrite with silk-shaped,ring-shaped or irregularly at the edge replaced by the cobalt-poor pyrite at the core.The cobalt-rich pyrite has a clear oscillating zone exhibits high Co (up to 3.52%) but low Ni contents (≤0.09%). The complex zoning indicated that fluid-coupled dissolution and precipitation mechanism was responsible for the formation of Co-rich pyrite. In comparison,cobaltite ore is the most important cobalt-bearing mineral in the Jintang cobalt polymetallic deposit,which is closely related to pyrite,marcasite,and arsenopyrite,and occurs as an isolated granular form or wrapped in arsenopyrite particles.The particle size of cobaltite is between 3 μm and 45 μm. The contents of Co,Fe,and Ni of cobalt vary from 9.51% to 23.21%(average is 15.50%),4.33% to 17.66%(average is 9.46%),and 5.52% to 15.24%(average is 9.31%),respectively.Combied with the occurrence form of cobalt in the Jingchong cobalt-copper polymetallic deposit,it could be concluded that the cobalt-containing minerals vary from cobaltite to pyrite along the Changsha-Pingjiang fault zone from southwest to northeast.Furthermore,the Co contents in cobaltite increases tend to while Ni contents decreases,and the high content of Co in pyrite decreases.The mineralizing disparity could be explained by controlling factors such as ore-forming fluid migration direction and physical-chemical conditions(e.g.,pH value and f S2). Combined with Co(-polymetallic) orebodies controlled by the NE-trending Changsha-Pingjiang deep fault zone,it was proposed that the southwestern part of the deep fault in Lianyunshan area would be the focus of next cobalt exploration in northeastern Hunan Province.
Juntao NING , Baoliang HUANG , Guojun DONG , Yueqiang ZHOU , Zhuolong GAO , Bo KANG . Characteristics of Cobalt-bearing Minerals in Hydrothermal Cobalt Deposits in Northeastern Hunan Province and Their Implication for Mineralization[J]. Gold Science and Technology, 2023 , 31(4) : 531 -545 . DOI: 10.11872/j.issn.1005-2518.2023.04.118
http://www.goldsci.ac.cn/article/2023/1005-2518/1005-2518-2023-31-4-531.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
陈倩,宋文磊,杨金昆,等,2021.矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J].矿床地质,40(2):345-368.
|
丰成友,张德全,党兴彦,2004.中国钴资源及其开发利用概况[J].矿床地质,93(1):93-100.
|
丰成友,张德全,佘宏全,等,2006.青海驼路沟钴(金)矿床形成的构造环境及钴富集成矿机制[J].矿床地质,25(5):544-561.
|
高林志,陈峻,丁孝忠,等,2011.湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄——对武陵运动的制约[J].地质通报,30(7):1001-1008.
|
蒋少涌,温汉捷,许成,等,2019.关键金属元素的多圈层循环与富集机理:主要科学问题及未来研究方向[J].中国科学基金,33(2):112-118.
|
焦建刚,黄喜峰,袁海潮,等,2009.青海德尔尼铜(钴)矿床研究新进展[J].地球科学与环境学报,31(1):42-47.
|
宁钧陶,2002.湘东北原生钴矿成矿地质条件分析[J].湖南地质,21(3):192-200.
|
王登红,2019.关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J].地质学报,93(6):1189-1209.
|
王焰,钟宏,曹勇华,等,2020.我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J].科学通报,65(33):3825-3838.
|
王智琳,伍杨,许德如,等,2020.湘东北长沙—平江断裂带关键金属钴的赋存状态与成矿规律[J].黄金科学技术,28(6):779-785.
|
许德如,王力,李鹏春,等,2009.湘东北地区连云山花岗岩的成因及地球动力学暗示[J].岩石学报,25(5):1056-1078.
|
许德如,王智琳,聂逢君,等,2019.中国钴矿资源现状与关键科学问题[J].中国科学基金,33(2):125-132.
|
阎磊,范裕,刘一男,2021.安徽庐枞盆地龙桥铁矿床中钴的赋存状态和空间分布规律[J].岩石学报,37(9):2778-2796.
|
翟明国,吴福元,胡瑞忠,等,2019.战略性关键金属矿产资源:现状与问题[J].中国科学基金,33(2):106-111.
|
张爱奎,王建军,刘光莲,等,2021.青海省祁漫塔格地区主要成矿系列与成矿模式[J].矿物学报,41(1):1-22.
|
张文山,1991.湘东北长沙—平江断裂动力变质带的构造及地球化学特征[J].大地构造与成矿学,2:100-109.
|
赵俊兴,李光明,秦克章,等,2019.富含钴矿床研究进展与问题分析[J].科学通报,64(24):2484-2500.
|
周岳强,康博,2017.湖南省井冲铜钴多金属矿床成矿流体特征研究[J].矿物岩石地球化学通报,36(增):836.
|
周岳强,许德如,董国军,等,2019.湖南长沙—平江断裂带构造演化及其控矿作用[J].东华理工大学学报(自然科学版),42(3):201-208.
|
/
〈 |
|
〉 |