img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

Prediction Study on Loosening Ring of Surrounding Rock Around Roadways Using the Optimized Ensemble Learning Algorithms Based on Adaboost

  • Boyang FANG ,
  • Guoyan ZHAO ,
  • Ju MA ,
  • Liqiang CHEN ,
  • Zheng JIAN
Expand
  • School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China

Received date: 2022-09-19

  Revised date: 2023-03-15

  Online published: 2023-07-20

Abstract

In order to improve the prediction accuracy of loose zone of excavation damaged zone around roadways and provide more scientific guidance for surrounding rock support and ground pressure management,a new prediction method was proposed.The improved Adaboost regression algorithm was used to integrate and optimize three machine learning algorithms,the optimal value of the error rate threshold was found to achieve the global optimal integration of Adaboost.The grid search was used to optimize the hyperparameters of BP,SVM and RF,and the regression prediction models of BP-Adaboost,SVM-Adaboost and RF-Adaboost were established.The results show that the prediction performance of BP-Adaboost is the best,it had the lowest error rate at 7.65 percent.The verification analysis was carried out based on the test example of excavation damaged zone around roadway,the results show that the mean relative error is 4.15%.Therefore,the model proposed in this paper can provide reference for the excavation damaged zone around roadway and meet the needs of engineering applications.

Cite this article

Boyang FANG , Guoyan ZHAO , Ju MA , Liqiang CHEN , Zheng JIAN . Prediction Study on Loosening Ring of Surrounding Rock Around Roadways Using the Optimized Ensemble Learning Algorithms Based on Adaboost[J]. Gold Science and Technology, 2023 , 31(3) : 497 -506 . DOI: 10.11872/j.issn.1005-2518.2023.03.122

References

null Chao Z, Kim H,2020. Brain image segmentation based on the hybrid of back propagation neural network and Adaboost system[J].Journal of Signal Processing Systems for Signal Image and Video Technology,92(3):289-298.
null Chen Chong, Li Xibing, Feng Fan,2018.Numerical study on damage zones of the induced roadway surrounding rock[J].Gold Science and Technology,26(6):771-779.
null Dong Fangting,2001.The Supporting Theory Based on Broken Rock Zone and Its Application Technology[M]. Beijing:China Coal Industry Publishing Home.
null Gao Wei, Zheng Yingren,2002.Evolutionary neural network model on prediction of loosen zone around roadway[J]. Chinese Journal of Rock Mechanics and Engineering,(5):658-661.
null Jing Feng,2008.Research on the Distribution Rule of the Shallow Crustal Geostress Field in the China Mainland and Engineering Disturbance Characteristics[D].Beijing:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.
null Jing Yue, Wang Shaofeng, Lu Jintao,2021.Thickness prediction of the excavation damage zone and non-explosive mechanized mining criterion[J].Gold Science and Technology,29(4):525-534.
null Li Guosheng, Zhang Hui, Jiang Shuaiqi,2018.Technology for enhancing supporting roadway surrounding rock influenced by frequent mining and its application[J].China Sa-fety Science Journal,28(7):142-147.
null Momeni M, Peyghami M R, Tarzanagh D A,2020. A new stochastic limited memory BFGS algorithm[J].Journal of Ma-thematical Extension,14(3):65-83.
null Qian Zhenyu, Ren Fenhua, Miao Shengjun,et al,2013.Optimization design of roadway support based on field measurement of surrounding rock broken zone[J].Metal Mine,42(10):16-20.
null Shen Jinsheng, Tang Xionghou,2012.Study on influence factors of broken rock zone around mining roadway[J].Mineral Engineering Research,27(2):10-14.
null Wang Wei,2014.Study on Dading Mountain Mine RoadwayRock Loose Circle the Mining and Its Influence[D].Mianyang:Southwest University of Science and Technology.
null Wang Xinfeng, He Yi, Lu Mingyuan,et al,2021.Study on deformation and failure characteristics of deep roadway surrounding rock under excavation unloading disturbance [J]. China Safety Science Journal,31(8):83-90.
null Wu Tao, Dai Jun, Du Meili,et al,2015.Surrounding rock loosing circle test based on acoustic test technology[J].Safety in Coal Mines,46(1):169-172.
null Wu Yongping, Zhai Jin, Xie Panshi,et al,2013.Measurement of loosing circle in surrounding rock of gateway based on technology of geological radar detection[J].Coal Science and Technology,41(3):32-34,38.
null Xiong B, Li R, Ren D,et al,2021.Prediction of flooding in the downstream of the Three Gorges Reservoir based on a back propagation neural network optimized using the Adaboost algorithm[J].Natural Hazards,107(2):1559-1575.
null Xue Xinhua,2006.Application of algorithm neural network method in the prediction of loosen zone around roadway[J]. Geotechnical Engineering Technique,(5):237-239.
null Yu Qinglei, Pu Jiangyong, Le Zhihua,et al,2021.Study on the broken rock zone of roadway in skarn copper-iron mine based on geological radar[J]. Metal Mine,50(3):46-53.
null Zhao Guoyan, Wu Hao,2013.Support vector machine model for predicting the thickness of excavation damaged zone[J]. Journal of Guangxi University(Natural Science Edition),38(2):444-450.
null Zhao Linlin, Wen Guofeng, Shao Liangshan,2018.PCA-Adaboost model for predicting coal spontaneous combustion in caving zone with imbalanced data[J].China Safety Science Journal,28(3):74-78.
null Zhou J, Li E, Yang S,et al,2019. Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories[J]. Safety Science,118:505-518.
null Zhou J, Li X B,2011. Evaluating the thickness of broken rock zone for deep roadways using nonlinear SVMs and multiple linear regression model[J]. Procedia Engineering,26:972-981.
null Zhu Chuanqu,1999.Stability classification and prediction of lo-osening circle size in the surrounding rock of back mining roadway[J].Gold Science and Technology,7(Supp.1):64-67.
null Zhu Zhijie, Zhang Hongwei, Chen Ying,2014. Prediction model of loosening zones around roadway based on MPSO-SVM[J].Computer Engineering and Applications,50(12):1-5.
null 陈冲,李夕兵,冯帆,2018.诱导巷道的围岩松动破坏区数值研究[J].黄金科学技术,26(6):771-779.
null 董方庭,2001. 巷道围岩松动圈支护理论与应用技术[M]. 北京:煤炭工业出版社.
null 高玮,郑颖人,2002.巷道围岩松动圈预测的进化神经网络法[J].岩石力学与工程学报,(5):658-661.
null 景锋,2008. 中国大陆浅层地壳地应力场分布规律及工程扰动特征研究[D].北京:中国科学院武汉岩土力学研究所.
null 景岳,王少锋,鲁金涛,2021.矿岩开挖松动区厚度预测及非爆机械化开采判据[J].黄金科学技术,29(4):525-534.
null 李国盛,张辉,蒋帅旗,2018. 频繁采动影响巷道围岩强化支护技术及其应用[J].中国安全科学学报,28(7):142-147.
null 钱振宇,任奋华,苗胜军,等,2013.基于围岩松动圈现场测量的巷道支护优化[J].金属矿山,42(10):16-20.
null 沈金生,唐雄厚,2012. 回采巷道围岩松动圈影响因素分析[J].矿业工程研究,27(2):10-14.
null 王伟,2014. 大顶山矿区回采巷道围岩松动圈及影响研究[D]. 绵阳:西南科技大学.
null 王新丰,何毅,陆明远,等,2021.开挖卸荷扰动深部巷道围岩变形破坏特征研究[J].中国安全科学学报,31(8):83-90.
null 吴涛,戴俊,杜美利,等,2015.基于声波法测试技术的巷道围岩松动圈测定[J].煤矿安全,46(1):169-172.
null 伍永平,翟锦,解盘石,等,2013.基于地质雷达探测技术的巷道围岩松动圈测定[J].煤炭科学技术,41(3):32-34,38.
null 薛新华,2006.遗传神经网络法在巷道围岩松动圈预测中的应用[J].岩土工程技术,(5):237-239.
null 于庆磊,蒲江涌,勒治华,等,2021.基于地质雷达的矽卡岩型铜铁矿巷道松动圈研究[J].金属矿山,50(3):46-53.
null 赵国彦,吴浩,2013.松动圈厚度预测的支持向量机模型[J].广西大学学报(自然科学版),38(2):444-450.
null 赵琳琳,温国锋,邵良杉,2018.不均衡数据下的采空区煤自燃PCA-Adaboost预测模型[J].中国安全科学学报,28(3):74-78.
null 朱川曲,1999.回采巷道围岩稳定性分类及松动圈尺寸预测[J].黄金科学技术,7(增1):64-67.
null 朱志洁,张宏伟,陈蓥,2014.基于MPSO-SVM巷道围岩松动圈预测研究[J].计算机工程与应用,50(12):1-5.
Outlines

/