Prediction Study on Loosening Ring of Surrounding Rock Around Roadways Using the Optimized Ensemble Learning Algorithms Based on Adaboost
Received date: 2022-09-19
Revised date: 2023-03-15
Online published: 2023-07-20
In order to improve the prediction accuracy of loose zone of excavation damaged zone around roadways and provide more scientific guidance for surrounding rock support and ground pressure management,a new prediction method was proposed.The improved Adaboost regression algorithm was used to integrate and optimize three machine learning algorithms,the optimal value of the error rate threshold was found to achieve the global optimal integration of Adaboost.The grid search was used to optimize the hyperparameters of BP,SVM and RF,and the regression prediction models of BP-Adaboost,SVM-Adaboost and RF-Adaboost were established.The results show that the prediction performance of BP-Adaboost is the best,it had the lowest error rate at 7.65 percent.The verification analysis was carried out based on the test example of excavation damaged zone around roadway,the results show that the mean relative error is 4.15%.Therefore,the model proposed in this paper can provide reference for the excavation damaged zone around roadway and meet the needs of engineering applications.
Boyang FANG , Guoyan ZHAO , Ju MA , Liqiang CHEN , Zheng JIAN . Prediction Study on Loosening Ring of Surrounding Rock Around Roadways Using the Optimized Ensemble Learning Algorithms Based on Adaboost[J]. Gold Science and Technology, 2023 , 31(3) : 497 -506 . DOI: 10.11872/j.issn.1005-2518.2023.03.122
null | Chao Z, Kim H,2020. Brain image segmentation based on the hybrid of back propagation neural network and Adaboost system[J].Journal of Signal Processing Systems for Signal Image and Video Technology,92(3):289-298. |
null | Chen Chong, Li Xibing, Feng Fan,2018.Numerical study on damage zones of the induced roadway surrounding rock[J].Gold Science and Technology,26(6):771-779. |
null | Dong Fangting,2001.The Supporting Theory Based on Broken Rock Zone and Its Application Technology[M]. Beijing:China Coal Industry Publishing Home. |
null | Gao Wei, Zheng Yingren,2002.Evolutionary neural network model on prediction of loosen zone around roadway[J]. Chinese Journal of Rock Mechanics and Engineering,(5):658-661. |
null | Jing Feng,2008.Research on the Distribution Rule of the Shallow Crustal Geostress Field in the China Mainland and Engineering Disturbance Characteristics[D].Beijing:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences. |
null | Jing Yue, Wang Shaofeng, Lu Jintao,2021.Thickness prediction of the excavation damage zone and non-explosive mechanized mining criterion[J].Gold Science and Technology,29(4):525-534. |
null | Li Guosheng, Zhang Hui, Jiang Shuaiqi,2018.Technology for enhancing supporting roadway surrounding rock influenced by frequent mining and its application[J].China Sa-fety Science Journal,28(7):142-147. |
null | Momeni M, Peyghami M R, Tarzanagh D A,2020. A new stochastic limited memory BFGS algorithm[J].Journal of Ma-thematical Extension,14(3):65-83. |
null | Qian Zhenyu, Ren Fenhua, Miao Shengjun,et al,2013.Optimization design of roadway support based on field measurement of surrounding rock broken zone[J].Metal Mine,42(10):16-20. |
null | Shen Jinsheng, Tang Xionghou,2012.Study on influence factors of broken rock zone around mining roadway[J].Mineral Engineering Research,27(2):10-14. |
null | Wang Wei,2014.Study on Dading Mountain Mine RoadwayRock Loose Circle the Mining and Its Influence[D].Mianyang:Southwest University of Science and Technology. |
null | Wang Xinfeng, He Yi, Lu Mingyuan,et al,2021.Study on deformation and failure characteristics of deep roadway surrounding rock under excavation unloading disturbance [J]. China Safety Science Journal,31(8):83-90. |
null | Wu Tao, Dai Jun, Du Meili,et al,2015.Surrounding rock loosing circle test based on acoustic test technology[J].Safety in Coal Mines,46(1):169-172. |
null | Wu Yongping, Zhai Jin, Xie Panshi,et al,2013.Measurement of loosing circle in surrounding rock of gateway based on technology of geological radar detection[J].Coal Science and Technology,41(3):32-34,38. |
null | Xiong B, Li R, Ren D,et al,2021.Prediction of flooding in the downstream of the Three Gorges Reservoir based on a back propagation neural network optimized using the Adaboost algorithm[J].Natural Hazards,107(2):1559-1575. |
null | Xue Xinhua,2006.Application of algorithm neural network method in the prediction of loosen zone around roadway[J]. Geotechnical Engineering Technique,(5):237-239. |
null | Yu Qinglei, Pu Jiangyong, Le Zhihua,et al,2021.Study on the broken rock zone of roadway in skarn copper-iron mine based on geological radar[J]. Metal Mine,50(3):46-53. |
null | Zhao Guoyan, Wu Hao,2013.Support vector machine model for predicting the thickness of excavation damaged zone[J]. Journal of Guangxi University(Natural Science Edition),38(2):444-450. |
null | Zhao Linlin, Wen Guofeng, Shao Liangshan,2018.PCA-Adaboost model for predicting coal spontaneous combustion in caving zone with imbalanced data[J].China Safety Science Journal,28(3):74-78. |
null | Zhou J, Li E, Yang S,et al,2019. Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories[J]. Safety Science,118:505-518. |
null | Zhou J, Li X B,2011. Evaluating the thickness of broken rock zone for deep roadways using nonlinear SVMs and multiple linear regression model[J]. Procedia Engineering,26:972-981. |
null | Zhu Chuanqu,1999.Stability classification and prediction of lo-osening circle size in the surrounding rock of back mining roadway[J].Gold Science and Technology,7(Supp.1):64-67. |
null | Zhu Zhijie, Zhang Hongwei, Chen Ying,2014. Prediction model of loosening zones around roadway based on MPSO-SVM[J].Computer Engineering and Applications,50(12):1-5. |
null | 陈冲,李夕兵,冯帆,2018.诱导巷道的围岩松动破坏区数值研究[J].黄金科学技术,26(6):771-779. |
null | 董方庭,2001. 巷道围岩松动圈支护理论与应用技术[M]. 北京:煤炭工业出版社. |
null | 高玮,郑颖人,2002.巷道围岩松动圈预测的进化神经网络法[J].岩石力学与工程学报,(5):658-661. |
null | 景锋,2008. 中国大陆浅层地壳地应力场分布规律及工程扰动特征研究[D].北京:中国科学院武汉岩土力学研究所. |
null | 景岳,王少锋,鲁金涛,2021.矿岩开挖松动区厚度预测及非爆机械化开采判据[J].黄金科学技术,29(4):525-534. |
null | 李国盛,张辉,蒋帅旗,2018. 频繁采动影响巷道围岩强化支护技术及其应用[J].中国安全科学学报,28(7):142-147. |
null | 钱振宇,任奋华,苗胜军,等,2013.基于围岩松动圈现场测量的巷道支护优化[J].金属矿山,42(10):16-20. |
null | 沈金生,唐雄厚,2012. 回采巷道围岩松动圈影响因素分析[J].矿业工程研究,27(2):10-14. |
null | 王伟,2014. 大顶山矿区回采巷道围岩松动圈及影响研究[D]. 绵阳:西南科技大学. |
null | 王新丰,何毅,陆明远,等,2021.开挖卸荷扰动深部巷道围岩变形破坏特征研究[J].中国安全科学学报,31(8):83-90. |
null | 吴涛,戴俊,杜美利,等,2015.基于声波法测试技术的巷道围岩松动圈测定[J].煤矿安全,46(1):169-172. |
null | 伍永平,翟锦,解盘石,等,2013.基于地质雷达探测技术的巷道围岩松动圈测定[J].煤炭科学技术,41(3):32-34,38. |
null | 薛新华,2006.遗传神经网络法在巷道围岩松动圈预测中的应用[J].岩土工程技术,(5):237-239. |
null | 于庆磊,蒲江涌,勒治华,等,2021.基于地质雷达的矽卡岩型铜铁矿巷道松动圈研究[J].金属矿山,50(3):46-53. |
null | 赵国彦,吴浩,2013.松动圈厚度预测的支持向量机模型[J].广西大学学报(自然科学版),38(2):444-450. |
null | 赵琳琳,温国锋,邵良杉,2018.不均衡数据下的采空区煤自燃PCA-Adaboost预测模型[J].中国安全科学学报,28(3):74-78. |
null | 朱川曲,1999.回采巷道围岩稳定性分类及松动圈尺寸预测[J].黄金科学技术,7(增1):64-67. |
null | 朱志洁,张宏伟,陈蓥,2014.基于MPSO-SVM巷道围岩松动圈预测研究[J].计算机工程与应用,50(12):1-5. |
/
〈 | 〉 |