Research on Path Planning of Mobile Equipment in Dynamic Confined Space of Underground Roadway
Received date: 2022-10-18
Revised date: 2023-01-11
Online published: 2023-04-27
With the rapid development of unmanned driving technology,the driverless vehicles on the road have been widely used,which has laid a solid foundation for the fully unmanned mine.Especially for un-derground operation equipment,the roadway environment has the characteristics of closedness,irregular driving area,and difficulty in environmental perception,which makes the mobile equipment of underground manual driving inefficient and frequent accidents.So in a chaotic,irregular and dynamic environment,a safe and efficient autonomous navigation system is essential.The traditional autonomous navigation of underground mobile equipment mainly relies on pre-established static maps to make global path planning,then directly hands over the global path to control model,which makes it impossible to update the map in time when encountering sudden obstacles,resulting in oscillating trajectories and crooked paths.In order to solve the above problems,this article proposed the improved TEB (Time Elastic Band) local path planning to quickly update the path by combining global planning and local planning on the basis of mapping and navigation.In order to adapt the underground roadway environment, add target point constraints,urgency constraints,end smoothing constraints and energy consumption constraints,the nonlinear optimization problem can be iteratively solved through the G2O graph optimization framework to obtain a suboptimal solution that meets the requirements,the programming speed is within 100 ms.By simulating the dual-lane collision-free,dual-lane oncoming traffic,dynamic crossing scene,according to the principle of underground driving,the improved TEB algorithm produces a more feasible trajectory,which effectively shortens the path length,reduces the number of turns and stops,especially the path smoothness at the corner,and the operating efficiency is higher than the traditional TEB path planning algorithm.The average path generation value before the improvement was 23.09,and the average path generation value after the improvement was 10.19,which decreased the overall generation value by 55.87%.Finally,the unmanned vehicle experimental platform is used to build random obstacles in the underground roadway scene according to the 9∶1 scale,and the feasibility of the algorithm is verified in the dynamic cross environment,which can satisfy the safe and efficient driving of underground mobile equipment in the roadway.
Zhuo LIU , Mingtao JIA , Liguan WANG . Research on Path Planning of Mobile Equipment in Dynamic Confined Space of Underground Roadway[J]. Gold Science and Technology, 2023 , 31(2) : 302 -312 . DOI: 10.11872/j.issn.1005-2518.2023.02.149
数据显示,一季度全国批准项目用地预审73.9万亩,同比增加51.7%,交通运输、水利设施和能源用地占比分别为72.5%、6.3%和6.6%。其中,自然资源部批准建设项目用地预审49件,涉及用地23.5万亩,涉及投资额约6 000亿元,为重大建设项目立项投资提供了空间支撑。
自然资源部国土空间用途管制司司长赵毓芳说,将通过采取先行用地审批承诺、分期分段办理用地报批、成立用地要素保障专班等一系列政策措施,支持建设项目依法依规开工建设并尽快形成实物工作量。
数据显示,一季度自然资源部批准重大项目先行用地同比增长235.7%,支持交通项目中的桥梁、水利工程中的坝区等先行开工建设。
据介绍,为支持“十四五”规划纲要确立的重大工程加快建设,支持城市群和都市圈现代化基础设施建设,2022年基础上,2023年全国增加了50万亩土地利用计划总量。
(2)约880亿元:民生项目用海有保障
一季度全国批准项目用海373个,批准用海面积约61.5万亩,同比分别增长20.3%和26.6%,涉及投资额近2 000亿元,以保障国家重大项目和民生项目用海。其中,自然资源部报国务院批准项目用海9个,批准用海面积约16.6万亩,涉及投资额约880亿元。
据自然资源部办公厅主任谢承祥介绍,2023年以来还出台政策,优化沿海和内河港口码头改扩建项目用地用海审批,不涉及新增用海和改变用海方式的,不再重新办理用海审批,以促进交通基础设施建设。
同日公布的《2022年中国自然资源统计公报》显示,初步核算,2022年全国海洋生产总值为94 628亿元,比上年增长1.9%,占国内生产总值的比重为7.8%。
(3)新增产能4.4亿t/a:加大能源矿产勘探力度
一季度全国探矿权新立登记96个,同比增长29.7%,其中煤炭、石油、天然气、金矿、铁矿和锂矿等战略性矿种46个。新增矿山设计生产能力4.4亿t/a,同比增长51.7%。
谢承祥说,为推进新一轮找矿突破战略行动,自然资源部组建了新一轮找矿突破战略行动办公室,王广华部长担任主任;新一轮找矿突破战略行动将重点围绕紧缺和战略性矿产,加强国内勘查开发,推动能源和重要矿产资源增储上产。
据悉,为促进新能源等产业发展,自然资源部会同相关部门出台了支持光伏发电产业用地管理政策,在严格保护生态前提下,鼓励利用未利用地和存量建设用地发展光伏产业,鼓励在沙漠、戈壁和荒漠等区域选址建设大型光伏发电基地。
http://www.goldsci.ac.cn/article/2023/1005-2518/1005-2518-2023-31-2-302.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
白国星,刘丽,孟宇,等,2020.基于非线性模型预测控制的移动机器人实时路径跟踪[J].农业机械学报,51(9):47-52,60.
|
鲍久圣,张牧野,葛世荣,等,2022.基于改进A*和人工势场算法的无轨胶轮车井下无人驾驶路径规划 [J].煤炭学报,47(3):1347-1360.
|
陈纪廷,郭晨,刘毅,2021.基于时间弹性带的移动机器人路径优化方法[J].科学技术与工程,21(26):11212-11219.
|
陈盟,王李管,贾明涛,等,2013.地下铲运机自主导航研究现状及发展趋势[J].中国安全科学学报,23(3):130-134.
|
陈奕梅,沈建峰,李柄棋,2022.改进TEB算法的多机器人动态避障策略研究[J].电光与控制,29(5):107-112.
|
高志伟,代学武,郑志达,2020.基于运动控制和频域分析的移动机器人能耗最优轨迹规划[J].自动化学报,46(5):934-945.
|
姜勇,姜智,郭鑫,等,2018.基于遗传算法—反向传播神经网络的地下无人驾驶车辆自主导航技术[J].机械制造,56(12):26-30.
|
罗维东,马宝全,孟宇,等,2020.基于NMPC的地下无人铲运机反应式导航系统[J].煤炭学报,45(4):1536-1546.
|
杨超,陈树新,刘立,等,2011.反应式导航在地下自主行驶铲运机中的应用[J].煤炭学报,36(11):1943-1948.
|
杨怡婷,2022.两轮自平衡可移动机器人能耗最优运动轨迹规划方法[J].兰州文理学院学报(自然科学版),36(1):59-63.
|
/
〈 |
|
〉 |