Chemical Characteristics of Apatite Minerals in Hydrothermal Gold Deposits with Different Metallogenic Temperatures in the Yunnan-Guizhou-Guangxi Region:A Discussion on the Particularity of Sources of Ore-forming Fluids of the Carlin-type Gold Deposits
Received date: 2022-09-30
Revised date: 2022-11-28
Online published: 2023-04-27
Yunnan-Guizhou-Guangxi region,one of the most important gold mineralization areas in China,hosts many high temperature magmatic hydrothermal gold (copper) deposits,such as Pulang gold-bearing porphyry copper deposit,Beiya and Yaoan gold deposits,and low temperature hydrothermal gold deposits,namely carlin-type gold deposit,such as Badu,Nibao and Shuiyindong gold deposits.A lot of chemical studies of minerals,such as magnetite,pyrite and apatite have been carried out,and the abundant mineralogical geochemical data of trace elements in situ have been accumulated. However,the source materials and formation process of the deposits are still be disputed.Therefore,further statistical and comparative analyses of these data may provide a basis for revealing metallogenic information and guiding prospecting exploration.Due to the unique chemical characteristics,apatite can better preserve the important information of magma-hydrothermal evolution process,and is often used to define the fine metallogenic process of ore deposits.In this paper,the trace elements of hydrothermal apatite in high-temperature magma-hydrothermal deposits(Yao’an gold deposit and Pulang gold-bearing copper deposit) and low-temperature carlin-type gold deposits(Badu and Nibao gold deposits) have been collected and analyzed.It is found that the apatite in the high-temperature alkali-rich porphyry gold (copper) deposit is characterized by automorphic shape,high F and Cl contents,enriched LREE,and depleted HREE.In contrast,the apatite in the low-temperature carlin-type gold deposits is characterized by hypautomorphic and xenomorphic shapes,low F and Cl contents,enriched MREE.In addition,the δEu-δCe binary diagram and chondrite-normalized REE patterns revealed that the carlin-type gold deposits have higher oxygen fugacity than magmatic hydrothermal copper and gold deposits.Combined with the geochemical analysis of rare earth elements of stibnite in the Youjiang Basin,it is concluded that the enrichment characteristics of MREE in apatite(including fluorite and calcite) indicate that the low-temperature mineralizing fluid may be related to the special basin basement rock. In conclusion,apatite has unique geochemical characteristics in high temperature-medium and low temperature gold deposits,which can effectively reveal the type of ore deposit and the evolution process of ore-forming fluid.
Linlin LIU , Jun CHEN , Zaifeng YANG , Lijuan DU , Yanbing JI , Lulin ZHENG . Chemical Characteristics of Apatite Minerals in Hydrothermal Gold Deposits with Different Metallogenic Temperatures in the Yunnan-Guizhou-Guangxi Region:A Discussion on the Particularity of Sources of Ore-forming Fluids of the Carlin-type Gold Deposits[J]. Gold Science and Technology, 2023 , 31(2) : 219 -231 . DOI: 10.11872/j.issn.1005-2518.2023.02.132
null | Andersson S S, Wagner T, Jonsson E,et al,2019.Apatite as a tracer of the source,chemistry and evolution of ore-forming fluids:The case of the Olserum-Djupedal REE-phosphate mineralisation,SE Sweden[J].Geochimica et Cosmochimica Acta,255:163-187. |
null | Ansberque C, Chew D M, Drost K,2021.Apatite fission-track dating by LA-Q-ICP-MS imaging[J].Chemical Geology,560:119977. |
null | Ansberque C, Mark C, Caulfield J T,et al,2019.Combined in-situ determination of halogen (F,Cl) content in igneous and detrital apatite by SEM-EDS and LA-Q-ICPMS:A potential new provenance tool[J].Chemical Geology,524:406-420. |
null | Bau M, Dulski P,1996.Distribution of yttrium and rare earth elements in the Penge and Kuruman iron formations,Transvaal supergroup South Africa[J].Precambrian Research,79:37-55. |
null | Bi Xianwu, Hu Ruizhong, Peng Jiantang,et al,2005.Geochemical characteristics of the Yao’an and Machangqing alkaline-rich intrusions[J].Acta Petrologica Sinica,21(1):113-124. |
null | Bilal B A, Becker P,1979.Complex formation of trace elements in geochemical systems—II.Stability of rare earths fluoro complexes in fluorite bearing model system at various ionic strengths[J].Journal of Inorganic and Nuclear Chemistry,41(11):1607-1608. |
null | Cao M J, Li G M, Qin K Z,et al,2012.Major and trace element characteristics of apatites in granitoids from Central Kazakhstan:Implications for petrogenesis and mineralization[J].Resource Geology,62(1):63-83. |
null | Chen J, Huang Z L, Yang R D,et al,2021a.Gold and antimony metallogenic relations and ore-forming process of Qinglong Sb(Au) deposit in Youjiang basin,SW China:Sulfide trace elements and sulfur isotopes[J].Geoscience Frontiers,12(2):605-623. |
null | Chen J, Yang R D, Du L J,et al,2018a.Mineralogy,geochemistry and fluid inclusions of the Qinglong Sb-(Au) deposit,Youjiang basin(Guizhou,SW China)[J].Ore Geology Reviews,92:1-18. |
null | Chen J, Yang R D, Du L J,et al,2020.Multistage fluid sources and evolution of Qinglong Sb-(Au) deposit in northern margin of Youjiang basin,SW China:REE geochemistry and Sr-H-O isotopes of ore-related jasperoid,quartz and fluorite[J].Ore Geology Reviews,127:103851. |
null | Chen L, Zhang Y,2018b.In situ major-,trace-elements and Sr-Nd isotopic compositions of apatite from the Luming porphyry Mo deposit,NE China:Constraints on the petrogenetic-metallogenic features[J].Ore Geology Reviews,94:93-103. |
null | Chen M H, Bagas L, Liao X,et al,2019.Hydrothermal apatite SIMS Th Pb dating:Constraints on the timing of low-temperature hydrothermal Au deposits in Nibao,SW China[J].Lithos,324/325:418-428. |
null | Chen X L, Huang W T, Chen L,et al,2021b.Controlling factors of different Late Cretaceous granitoid-related mineralization between western margin of the Yangtze Block and the neighbor Yidun arc[J].Ore Geology Reviews,139:104554. |
null | Chen X L, Leng C B, Zou S H,et al,2021c.Geochemical compositions of apatites from the Xuejiping and Disuga porphyries in Zhongdian arc:Implications for porphyry Cu mineralization[J].Ore Geology Reviews,130:103954. |
null | Chu M F, Wang K L, Griffin W L,et al,2009.Apatite composition:Tracing petrogenetic processes in transhimalayan granitoids[J].Journal of Petrology,50:1829-1855. |
null | Deng J, Wang Q F, Li G J,2017.Tectonic evolution,superimposed orogeny,and composite metallogenic system in China[J].Gondwana Research,50:216-266. |
null | Deng J, Wang Q F, Li G J,et al,2014.Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China[J].Gondwana Research,26 (2):419-437. |
null | Ding T, Ma D S, Lu J J,et al,2015.Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province,Shi-Hang zone,China:Implications for petrogenesis and metallogenesis[J].Ore Geology Reviews,69:104-117. |
null | Duan D F, Jiang S Y, Tang Y J,et al,2021.Chlorine and sulfur evolution in magmatic rocks:A record from amphibole and apatite in the Tonglvshan Cu-Fe(Au) skarn deposit in Hubei Province,south China[J].Ore Geology Reviews,137:104312. |
null | Flynn R T, Burnham C W,1978.An experimental determination of rare earth partition coefficients between a chloride containing vapor phase and silicate melts[J].Geochimica et Cosmochimica Acta,42(6):685-701. |
null | Ge Liangsheng, Guo Xiaodong, Zou Yilin,et al,2002.Geology and genesis of gold deposit related to alkali rich magmatism in Yao’an,Yunnan Province[J].Geology and Resources,11(1):29-37. |
null | Gosselin D C, Smith M R, Lepel E A,et al,1992.Rare earth elements in chloride-rich groundwater,Palo Duro Basin,Texas,USA[J].Geochimica et Cosmochimica Acta,56:1495-1505. |
null | Guo J H, Leng C B, Zhang X C,et al,2020.Textural and chemical variations of magnetite from porphyry Cu-Au and Cu skarn deposits in the Zhongdian region,northwestern Yunnan,SW China[J].Ore Geology Reviews,116:103245. |
null | Haas J R, Shock E L, Sassani D C,1995.Rare earth elements in hydrothermal systems:Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J].Geochimica et Cosmochimica Acta,59(21):4329-4350. |
null | Hu R Z, Chen W T, Xu D,et al,2017.Reviews and new metallogenic models of mineral deposits in South China:An introduction[J].Journal of Asian Earth Sciences,137:1-8. |
null | Hu R Z, Su W C, Bi X W,2002.Geology and geochemistry of carlin-type gold deposits in China[J].Mineralium Deposita,37:378-392. |
null | Jia F D, Zhang C Q, Liu H,et al,2020.In situ major and trace element compositions of apatite from the Yangla skarn Cu deposit,southwest China:Implications for petrogenesis and mineralization[J].Ore Geology Reviews,127:103360. |
null | Jia Liqiong, Dong Guochen, Wang Liang,et al,2011.Research sta-tus of apatite genetic mineralogy[C]//Proceedings of the 13th Annual Academic Conference of the Chinese Society of Mineral and Petrology Geochemistry.Guangzhou:Chinese Society for Mineralogy Petrology and Geochemistry. |
null | Keppler H,1996.Constraints from partitioning experiments on the composition of subduction-zone fluids[J].Nature,380:237-240. |
null | Li Yong, Mo Xuanxue, Yu Xuehui,et al,2011.Zircon U-Pb dating of several selected alkali-rich porphyries from the Jinshajiang-Ailaoshan fault zone and geological significance[J].Geoscience,25(2):189-200. |
null | Liu Jianzhong, Yang Chengfu, Wang Zepeng,et al,2017.Geological study of Shuiyindong gold deposit in Zhenfeng County,Guizhou Province[J].Geological Survey of China,4(2):32-41. |
null | Louvel M, Bordage A, Testemale D,et al,2015.Hydrothermal controls on the genesis of REE deposits:Insights from an in situ XAS study of Yb solubility and speciation in high temperature fluids (T<400℃)[J].Chemical Geology,417:228-237. |
null | Lu J, Chen W, Ying Y C,et al,2021.Apatite texture and trace element chemistry of carbonatite-related REE deposits in China:Implications for petrogenesis[J].Lithos,398/399:106276. |
null | Migdisov A A, Bychkov A Y, Williams-Jones A E,et al,2014.A predictive model for the transport of copper by HCl-bearing water vapour in ore-forming magmatic-hydrothermal systems:Implications for copper porphyry ore formation[J].Geochimica et Cosmochimica Acta,129:33-53. |
null | Nayebi N, Esmaeily D, Chew D M,et al,2021.Geochronological and geochemical evidence for multi-stage apatite in the Bafq iron metallogenic belt (Central Iran),with implications for the Chadormalu iron-apatite deposit[J].Ore Geology Reviews,132:104054. |
null | Pan L C, Hu R Z, Bi X W,et al,2020.Evaluating magmatic fertility of Paleo-Tethyan granitoids in eastern Tibet using apatite chemical composition and Nd isotope[J].Ore Geology Reviews,127:103757. |
null | Pan Y M, Michael E F,2002.Compositions of the apatite-group minerals:Substitution mechanisms and controlling factors[J].Reviews in Mineralogy and Geochemistry,48(1):12-40. |
null | Peng Jiantang, Hu Ruizhong, Jiang Guohao,2003.Samarium-Neodymium isotope system of fiuorites from the Qinglong antimony deposit,Guizhou Province:Constraints on the mineralizing age and ore-forming materials’ sources[J].Acta Petrologica Sinica,19(4):785-791. |
null | Peng Jiantang, Hu Ruizhong, Qi Liang,et al,2002.REE geochemistry of fluorite from the Qinglong antimony deposit and its geological implications[J].Chinese Journal of Geology,37(3):277-287. |
null | Pickering J, Matthews W, Enkelmann E,et al,2020.Laser ablation(U-Th-Sm)/He dating of detrital apatite[J].Chemical Geology,548:119683. |
null | Qian L, Wang Y, Xie J,et al,2019.The Late Mesozoic granodiorite and polymetallic mineralization in southern Anhui Province,China:A perspective from apatite geochemistry[J].Solid Earth Sciences,4:178-189. |
null | Qu P, Li N B, Niu H,et al,2019.Zircon and apatite as tools to monitor the evolution of fractionated I-type granites from the central Great Xing’an Range,NE China[J].Lithos,348/349:105207. |
null | Qu P, Li N B, Niu H,et al,2021.Difference in the nature of ore-forming magma between the Mesozoic porphyry Cu-Mo and Mo deposits in NE China:Records from apatite and zircon geochemistry[J].Ore Geology Reviews,135:104218. |
null | Sawlowicz Z,2013.REE and their relevance to the development of the Kupferschiefer copper deposit in Poland[J].Ore Geology Reviews,55:176-186. |
null | She Haidong, Fan Hongrui, Hu Fangfang,et al,2018.Migration and precipitation of rare earth elements in the hydrothermal fluids[J].Acta Petrologica Sinica,34(12):3567-3581. |
null | Su W C, Hu R Z, Xia B,et al,2009.Calcite Sm-Nd isochron age of the Shuiyindong carlin-type gold deposit,Guizhou,China[J].Chemical Geology,258(3/4):269-274. |
null | Su Wenchao, Zhu Luyan, Ge Xi,et al,2015.Infrared microthermometry of fluid inclusions in stibnite from the Dachang antimony deposit,Guizhou[J].Acta Petrologica Sinica,31(4):918-924. |
null | Sun M, Lin S F, Zhang F F,et al,2021.Post-ore change and preservation of the late Paleozoic Tuwu porphyry Cu deposit in eastern Tianshan,NW China:Constraints from geology and apatite fission track thermochronology[J].Ore Geology Reviews,137:104297. |
null | Sun S J, Yang X Y, Wang G J,et al,2019.In situ elemental and Sr-O isotopic studies on apatite fromthe Xu-Huai intrusion at the southern margin of the North China Craton:Implications for petrogenesis and metallogeny[J].Chemical Geology,510:200-214. |
null | Tan Q P, Xia Y, Wang X Q,et al,2017.Carbon-oxygen isotopes and rare earth elements as an exploration vector for carlin-type gold deposits:A case study of the Shuiyindong gold deposit,Guizhou Province,SW China[J].Journal of Asian Earth Sciences,148:1-12. |
null | Tan Q P, Xia Y, Xie Z J,et al,2015.Migration paths and precipitation mechanisms of ore-forming fluids at the Shuiyindong carlin-type gold deposit,Guizhou,China[J].Ore Geology Reviews,69:140-156. |
null | Taylor S R, McLennan S M,1985.The Continental Crust:Its Composition and Evolution[M].Oxford:Blackwell Scientific Editor. |
null | Teiber H, Marks M A W, Wenzel T,et al,2014.The distribution of halogens(F,Cl,Br) in granitoid rocks[J].Chemical Geology,374/375:92-109. |
null | Teiber H, Scharrer M, Marks M A W,et al,2015.Equilibrium partitioning and subsequent re-distribution of halogens among apatite-biotite-amphibole assemblages from mantle-derived plutonic rocks:Complexities revealed[J].Lithos,220/221/222/223:221-237. |
null | Wang Chenguang, Yang Liqiang, He Wenyan,2017.Apatite trace element and halogen compositions from the Beiya gold deposit,in western Yunnan and geological significance[J].Acta Petrologica Sinica,33(7):2213-2224. |
null | Wang Guozhi, Hu Ruizhong, Su Wenchao,2002.Geochemical constraint on ore fluid from fluorite in Qinglong antimony deposit,south-western Guizhou[J].Mineral Deposits,21(Supp.1):1028-1030. |
null | Wang Shouxu, Zhang Xingchun, Qin Chaojian,et al,2007.Fluid inclusions in quartz veins of Pulang porphyry copper deposit,Zhongdian,northwestern Yunnan,China[J].Geochemica,36(5):467-478. |
null | Wang Y N, Cai K, Sun M,et al,2018.Tracking the multi-stage exhumation history of the western Chinese Tianshan by apatite fission track(AFT) dating:Implication for the preservation of epithermal deposits in the ancient orogenic belt[J].Ore Geology Reviews,100:111-132. |
null | Wang Z, Tan Q P, Xia Y,et al,2021.Sm-Nd isochron age constraints of Au and Sb mineralization in southwestern Guizhou Province,China[J].Minerals,11(2):100. |
null | Wei D T, Zhou T F, Xia Y,et al,2022.Ore fluid origin recorded by apatite chemistry:A case study on altered dolerite from the Badu carlin-type gold deposit,Youjiang Basin,SW China[J].Ore Geology Reviews,143:104745. |
null | Wood S A,1990.The aqueous geochemistry of the rare-earth elements and yttrium:2.Theoretical predictions of speciation in hydrothermal solutions to 350℃ at saturation water vapor pressure[J].Chemical Geology,88(1):99-125. |
null | Xiao X, Zhou T F, White N C,et al,2021.Porphyry Cu mineralization processes of Xinqiao deposit,Tongling ore district:Constraints from the geochronology and geochemistry of zircon,apatite,and rutile[J].Ore Geology Reviews,138:104340. |
null | Xie Xianyang, Feng Dingsu, Chen Maohong,et al,2016.Fluid inclusion and stable isotope geochemistry study of the Nibao gold deposit,Guizhou and insights into ore genesis[J].Acta Petrologica Sinica,32(11):3360-3376. |
null | Xing Kai, Shu Qihai,2021.Applications of apatite in study of ore deposits:A review[J].Mineral Deposits,40(2):189-205. |
null | Xing Kai, Shu Qihai, Zhao Hesen,et al,2018.Geochemical characteristics and geological significance of apatite in Pulang porphyry copper deposit,western Yunnan[J].Acta Pe-trologica Sinica,34(5):1427-1440. |
null | Xu Y M, Jiang S Y, Zhu J X,2021.Factors controlling the formation of large porphyry Cu deposits:A case study from the Jiurui ore district of Middle-Lower Yangtze River Metallogenic Belt using in situ zircon and apatite chemistry from syn-mineralization intrusions[J].Ore Geology Reviews,133:104082. |
null | Zeng Pusheng, Li Wenchang, Wang Haiping,et al,2006.The Indosinian lPulang superlarge porphyry copper deposit in Yunnan,China:Petrology and chronology[J].Acta Petrologica Sinica,22(4):989-1000. |
null | Zeng Pusheng, Mo Xuanxue, Yu Xuehui,2002.Nd,Sr and Pb isotopic characteristics of the alkaline-rich porphyries in western Yunnan and its compression strike-slip setting[J].Acta Petrologica et Mineralogica,21(3):231-241. |
null | Zhang F H, Li W B, White N C,et al,2020.Geochemical and isotopic study of metasomatic apatite:Implications for gold mineralization in Xindigou,northern China[J].Ore Geology Reviews,127:103853. |
null | Zhang S Y, Yang L Q, He W Y,et al,2021a.Melt volatile budgets and magma evolution revealed by diverse apatite halogen and trace elements compositions:A case study at Pulang porphyry Cu-Au deposit,China[J].Ore Geology Reviews,139:104509. |
null | Zhang Shuo, Jian Xing, Zhang Wei,2018.Sedimentary provenance analysis using detrital apatite:A review[J].Advances in Earth Science,33(11):1142-1153. |
null | Zhang X M, Sun C Y, Xu W L,et al,2021b.Geochemistry of apatites from Mesozoic granitoids in the northeastern North China Craton and their petrogenetic implications[J].Lithos,402/403:106198. |
null | Zhang Yuquan, Xie Yingwen,1997.Chronology and Nd,Sr isotopic characteristics of alkali rich intrusive rocks in Ailao-shan Jinshajiang[J].Science in China,27(4):289-293. |
null | Zheng Y F,1996.Oxygen isotope fractionations involving apatites:Application to paleotemperature determination[J].Chemical Geology,127(1):177-187. |
null | Zheng Yulin, Zhang Changqing, Liu Huan,et al,2021.Apatite chemical feature of Yaoan gold deposit in western Yunnan and its geological significance[J].Mineral Deposits,40(1):156-168. |
null | Zhou Qiushi, Wang Rui,2020.Advances in chlorine isotope geochemistry[J].Earth Science Frontiers,27(3):42-67. |
null | Zhu J, Zhang Z C, Santosh M,et al,2020.Carlin-style gold province linked to the extinct Emeishan plume[J].Earth and Planetary Science Letters,530:115940. |
null | Zhu Xiaoqing, Wang Zhonggang, He Yan,et al,2004.REE content and distribution in apatite and its geological tracing significance[J].Chinese Rare Earths,25(5):41-45. |
null | Zou H, Xiao B, Gong D X,et al,2022.Origin and tectonic setting of Pingqiao fluorite-lithium deposit in the Guizhou,southwest Yangtze Block,China[J].Ore Geology Reviews,143:104755. |
null | 毕献武,胡瑞忠,彭建堂,等,2005.姚安和马厂箐富碱侵入岩体的地球化学特征[J]岩石学报,21(1):113-124. |
null | 葛良胜,郭晓东,邹依林,等,2002.云南姚安与富碱岩浆活动有关的金矿床地质及成因[J].地质与资源,11(1):29-37. |
null | 贾丽琼,董国臣,王梁,等,2011.磷灰石成因矿物学研究现状[C]//中国矿物岩石地球化学学会第13届学术年会论文集.广州:中国矿物岩石地球化学学会. |
null | 李勇,莫宣学,喻学惠,等,2011.金沙江—哀牢山断裂带几个富碱斑岩体的锆石 U-Pb 定年及地质意义[J].现代地质,25(2):189-200. |
null | 刘建中,杨成富,王泽鹏,等,2017.贵州省贞丰县水银洞金矿床地质研究[J].中国地质调查,4(2):32-41. |
null | 彭建堂,胡瑞忠,蒋国豪,2003.萤石Sm-Nd同位素体系对晴隆锑矿床成矿时代和物源的制约[J].岩石学报,19(4):785-791. |
null | 彭建堂,胡瑞忠,漆亮,等,2002.晴隆锑矿床中萤石的稀土元素特征及其指示意义[J].地质科学,37(3):277-287. |
null | 佘海东,范宏瑞,胡芳芳,等,2018.稀土元素在热液中的迁移与沉淀[J].岩石学报,34(12):3567-3581. |
null | 苏文超,朱路艳,格西,等,2015.贵州晴隆大厂锑矿床辉锑矿中流体包裹体的红外显微测温学研究[J].岩石学报,31(4):918-924. |
null | 王晨光,杨立强,和文言,2017.滇西北衙金矿床磷灰石微量元素和卤素成分的地质意义[J].岩石学报,33(7):2213-2224. |
null | 王国芝,胡瑞忠,苏文超,2002.黔西南晴隆锑矿萤石对成矿流体的地球化学限定[J].矿床地质,21(增1):1028-1030. |
null | 王守旭,张兴春,秦朝建,等,2007.滇西北中甸普朗斑岩铜矿流体包裹体初步研究[J].地球化学,36(5):467-478. |
null | 谢贤洋,冯定素,陈懋弘,等,2016.贵州泥堡金矿床的流体包裹体和稳定同位素地球化学研究及其矿床成因意义[J].岩石学报,32(11):3360-3376. |
null | 邢凯,舒启海,2021.磷灰石在矿床学研究中的应用[J].矿床地质,40(2):189-205. |
null | 邢凯,舒启海,赵鹤森,等,2018.滇西普朗斑岩铜矿床中磷灰石的地球化学特征及其地质意义[J].岩石学报,34(5):1427-1440. |
null | 曾普胜,李文昌,王海平,等,2006.云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征[J].岩石学报,22(4):989-1000. |
null | 曾普胜,莫宣学,喻学惠,2002.滇西富碱斑岩带的Nd、Sr、Pb同位素特征及其挤压走滑背景[J].岩石矿物学杂志,21(3):231-241. |
null | 张硕,简星,张巍,2018.碎屑磷灰石对沉积物源判别的指示[J].地球科学进展,33(11):1142-1153. |
null | 张玉泉,谢应雯,1997.哀牢山—金沙江富碱侵入岩年代学和Nd,Sr同位素特征[J].中国科学:地球科学,27(4):289-293. |
null | 郑瑜林,张长青,刘欢,等,2021.滇西姚安金矿床磷灰石化学特征及指示意义[J].矿床地质,40(1):156-168. |
null | 周秋石,王瑞,2020,氯同位素地球化学研究进展[J].地学前缘,27(3):42-67. |
null | 朱笑青,王中刚,黄艳,等,2004.磷灰石的稀土组成及其示踪意义[J].稀土,25(5):41-45. |
/
〈 | 〉 |