[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Mining Technology and Mine Management

Experimental Study on the Paste Filling Material of Iron Tailings Improved by Fly Ash

  • Long HAI ,
  • Tongjun CHENG ,
  • Bo XU ,
  • Xin ZHAO
Expand
  • School of Mechanics and Engineering,Liaoning Technical University,Fuxin 123000,Liaoning,China

Received date: 2022-04-24

  Revised date: 2022-09-07

  Online published: 2022-12-10

Highlights

The large storage of iron tailings not only causes environment pollution,but also has the risk of geological disasters.It can be used as paste filling material aggregate,which can solve the harm of tailings and ensure the safety and stability of underground stope.The Waitoushan iron mine adopts filling method.The filling material is composed of iron tailings,cement and water and the filling slurry has a mass concentration of 68%,which belongs to cemented filling with low-concentration whole tailings.Due to the low mass concentration of filling slurry, the whole tailings of iron tailings are coarse.Fine particles such as cement in the slurry are easily lost,which are not only waste cementing materials and affect the strength of the filling body,but also seriously pollute the underground environment.The filling material composition is fixed,and other admixtures and additives are not added,so the filling structure of the mine is single.Aiming at the problems of waste of filling materials and single filling structure in Waitoushan iron mine,the basic properties of Waitoushan iron tailings were studied by relevant tests.The test shows that the iron tailings have a large proportion,a small content of fine particles and poor gradation,so it is not suitable as paste aggregate alone.The fly ash was selected as admixture to supplement the fine particles in the iron tailings.The content of fly ash increased from 0 to 15% in a gradient of 2.5%,and the mass concentration of slurry was 72%,the paste filling material was prepared by mixing all materials.The slump,compressive strength,porosity and water absorption of filling materials with different fly ash content were tested.The results show that with the increase of fly ash content,the slump of slurry increases from 180.2 mm to 240.2 mm,the porosity decreases first and then slightly increases,and the water absorption rate increases.The unconfin compressive strength of filling material specimen could reach 1.359 MPa in 28 days.The results show that the fluidity and unconfined compressive strength of paste filling materials can be improved by adding fly ash,but the amount of fly ash should be no more than 12.5% of the solid mass.The results provide theoretical support for other metal mines to improve the filling structure.

Cite this article

Long HAI , Tongjun CHENG , Bo XU , Xin ZHAO . Experimental Study on the Paste Filling Material of Iron Tailings Improved by Fly Ash[J]. Gold Science and Technology, 2022 , 30(5) : 724 -732 . DOI: 10.11872/j.issn.1005-2518.2022.05.057

[an error occurred while processing this directive]

矿冶集团北矿机电打造智能化专属化浮选机

近年来,作为中国知名品牌BGRIMM浮选机装备制造商与供应商,北矿机电科技有限责任公司提出了智能浮选机概念及发展路径,融合现代传感、自动控制、人工智能、物联网和机器人等技术,实现对机械运行状态、浮选动力学过程信息及矿浆工艺性能参数的自感知、自诊断和自维护。

该公司研制出气泡直径在线测量仪、原位气泡负载测量仪、沉槽+浓度自感知的矿物悬浮特性在线检测仪与溢流堰清理机器人等仪器;开发出“浮选机运转状态—浮选动力学过程—工艺环境条件”的多维并行智能在线检测系统;自主设计了HIF系列大型化智能浮选机;针对能源矿物物料性质,开发了浮选机专属化技术。在江西铜业集团,北矿机电HIF-680智能浮选机应用于德兴铜矿,回收率提高了1.05%;HIF-130智能浮选机应用于武山铜矿,选铜回收率提高了1.10%,金、银回收率分别提高了0.88%和0.89%。近2年,北矿机电加快了全球智能化及专属化浮选机的推广进程,KYF-200浮选机、KYF-16浮选机和CLF-40浮选机等远销非洲、澳洲和美洲。

目前,BGRIMM系列新一代大型和超大型浮选机已在江西铜业集团、紫金集团、南非PMC铜矿和吉尔吉斯斯坦库鲁金矿等数十家矿山得到推广应用,为企业带来了显著的经济效益;相关技术成果经中国有色金属工业协会组织的鉴定评价,整体技术居于国际领先水平。以HIF-680超大型浮选机为代表的新一代浮选机技术,已获得PCT国际专利授权,为我国新一代浮选机技术走向国际、服务世界提供了有力保障,进一步提升了品牌国际影响力。

矿冶科技集团有限公司)

http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-5-724.shtml

Chan D Sun P C2006.Effects of fine recycled aggregate as sand replacement in concrete[J].Transaction of the Hongkong Institute of Engineers13(4):2-7.

Das B B Kondraivendhan B2011.Implication of pore size distribution parameters on compressive strength,permeability and hydraulic diffusivity of concrete[J].Construction and Building Materials28(1):382-386.

Fall M Pokharel M2010.Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills:Portland cement-paste backfill[J].Cement and Concrete Composites32(10):819-828.

Huang Xiaoyan Ni Wen Zhu Liping,et al,2010.Grinding characteristic of Qidashan iron tailings[J].Chinese Journal of Engineering32(10):1253-1257.DOI:10.13374/j.issn 1001-053x.2010.10.003 .

Ke Xing2016.Study on Structure and Properties of the Consolidation Mass of Cemented Tailings Backfill[D].Wuhan:Wuhan University.

Liu Lang Fang Zhiyu Zhang Bo,et al,2021.Development history and basic categories of mine backfill technology[J].Metal Mine50(3):1-10.DOI:10.19614/j.cnki.jsks.202103001 .

Meng Fanjing Liu Huabo Hua Shaozhen2021.Mechanical mechanism of influence of inter-granular friction on granular lubrication[J].Engineering Mechanics38(4):221-229,246.

Meng W N Khayat K H2016.Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers[J].Composites Part B:Engineering,107:113-122.

Ministry of Housing and Urban-Rural Development of the People’s Republic of China,2019. Standard of geotechnical test method:GB/T 50123-2019 [S].Beijing:China Planning Press.

Ministry of Housing and Urban-Rural Development of the People’s Republic of China,State Administration of Market Supervision,2019. Standard for test methods of physical and mechanical properties of concrete:GB/T 50081-2019 [S].Beijing:China Building Industry Press.

Mohd Zain M F Radin S S2000.Physical properties of high-performance concrete with admixtures to a medium temperature range 20 ℃ to 50 ℃[J].Cement and Concrete Research30(8):1283-1287.

Paiva H Silva A S Velosa A,et al,2017.Microstructure and hardened state properties on pozzolan-containing concrete[J].Construction and Building Materials,140:374-384.

Pokharel M Fall M2013.Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill[J].Cement and Concrete Composites,38:21-28.

Scrivener K L Crumbie A K Laugesen P2004.The interfacial transition zone (ITZ) between cement paste and aggregate in concrete[J].Interface Science12(4):411-421.

State Administration of Market Supervision,State Administration for Standardization,2020. Technical specification for full tailings paste filling:GB/T 39489-2020 [S].Beijing:China Standard Press.

Wang Qihu Zhang Guangquan Ye Yicheng,et al,2019.Study on stress coordination of composite support body in stope filled alternately with waste rock and tailings[J].China Safety Science Journal29(4):96-103.

Wang X P Yu R Shui Z H,et al,2017.Mix design and characteristics evaluation of an eco-friendly ultra-high performance concrete incorporating recycled coral based materials[J].Journal of Cleaner Production,165:70-80.

Wang Zheng2020.Study on Corrosive Characteristics and Zoning Evaluation of Concrete Under Water/Soil Environment in Shanxi Province[D].Taiyuan:Taiyuan University of Technology.DOI:10.27352/d.cnki.gylgu.2020.000866 .

Yi Longsheng Mi Hongcheng Wu Qian,et al,2020.Present situation of comprehensive utilization of tailings resources in China[J].Conservation and Utilization of Mineral Resources40(3):79-84.DOI:10.13779/j.cnki.issn1001-0076.2020.03.013 .

Yu L Zhang J X Mu K2012.Relationships between compressive strength and microstructure in mortars with iron ore tailings as fine aggregate[J].Applied Mechanics and Materials,188:211-218.

Zeng Yayuqiong Pan Jianping Yang Xiuying,et al,2018.Application of iron tailings in road base materials[J].Applied Chemical Industry47(2):358-364.DOI:10.16581/j.cnki.issn1671-3206.20171204.047 .

Zhang Lihua2010.Discussion on the controlling method for backfilling cement-sand ratio[J].China Mine Engineering39(5):20-22,29.

国家市场监督管理总局,国家标准化管理委员会,2020. 全尾砂膏体充填技术规范:GB/T 39489-2020 [S].北京:中国标准出版社.

黄晓燕,倪文,祝丽萍,等,2010.齐大山铁尾矿粉磨特性[J].北京科技大学学报32(10):1253-1257.DOI:10.13374/j.issn1001-053x.2010.10.003 .

柯兴,2016.尾砂胶结充填固结体结构与性能研究[D].武汉:武汉大学.

刘浪,方治余,张波,等,2021.矿山充填技术的演进历程与基本类别[J].金属矿山50(3):1-10.DOI:10.19614/j.cnki.jsks.202103001 .

孟凡净,刘华博,花少震,2021.颗粒间摩擦对颗粒流润滑影响的力学机制[J].工程力学38(4):221-229,246.

王其虎,张光权,叶义成,等,2019.废石尾砂交替充填采场复合支撑体应力协调研究[J].中国安全科学学报29(4):96-103.

王铮,2020.山西省水土环境对混凝土的腐蚀分区评价及其腐蚀特性研究[D].太原:太原理工大学.DOI:10.27352/d.cnki.gylgu.2020.000866 .

易龙生,米宏成,吴倩,等,2020.中国尾矿资源综合利用现状[J].矿产保护与利用40(3):79-84.DOI:10.13779/j.cnki.issn1001-0076.2020.03.013 .

曾雅钰琼,潘建平,杨秀英,等,2018.铁尾矿在道路基层材料中的应用研究进展[J].应用化工47(2):358-364.DOI:10.16581/j.cnki.issn1671-3206.20171204.047 .

张利华,2010.充填料灰砂比控制方法探讨[J].中国矿山工程39(5):20-22,29.

中华人民共和国住房和城乡建设部,2019. 土工试验方法标准:GB/T 50123-2019 [S].北京:中国计划出版社.

中华人民共和国住房和城乡建设部,国家市场监督管理总局,2019. 混凝土物理力学性能试验方法标准:GB/T 50081-2019 [S].北京:中国建筑工业出版社.

Outlines

/

[an error occurred while processing this directive]