[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Prediction Method of Stope Stability Based on NPCA-GA-BP Neural Network
Received date: 2021-05-07
Revised date: 2021-08-30
Online published: 2022-06-17
Stope stability is a geological mechanics problem that cannot be ignored in mining,and its stability directly affects the safety of mine production and engineering decision-making.Therefore,scientific prediction of stope stability plays a crucial role in mining safety.The stability of stope is a typical nonlinear problem.Since BP neural network has the virtue of tackling complex nonlinear systems,it can be applied to stope stability prediction.Nevertheless,the existing prediction methods either only focus on optimizing the weights and thresholds of the neural network or only consider that the stability of the stope is under the influence of multiple factors and the influencing indexes have a strong correlation,but do not consider the two methods in an integrated manner.Hence,the prediction accuracy of stope stability based on neural network is low,which cannot provide valid support for mine management.Due to the highly nonlinear characteristics of the mining stability system,the traditional principal component analysis will lose a large amount of information.Therefore,we propose a stope stability prediction method using nonlinear principal component analysis combined with BP neural network optimized by the genetic algorithm,which effectively improves the prediction accuracy of stope stability.The nonlinear principal component analysis method performs nonlinear dimensionality reduction on the impact indicators of stope stability,replacing the original multiple indicators with a few principal components that retain the original information,simplifying the neural network structure,and improving the operational efficiency.GA aims to optimize the initial weights and thresholds of the BP neural network to overcome the defects of unstable initial weight thresholds and further improve the accuracy of quarry stability prediction.Taking the measured data of a mine as an example,the effectiveness of the proposed method is verified.The comparison results show that the average relative errors of NPCA-GA-BP and GA-BP models are 10.5% and 7.6% lower than those of BP models,respectively,indicating that the BP neural network is optimized by the genetic algorithm can significantly improve the prediction accuracy.The average relative error of the NPCA-GA-BP model is 2.9% lower than that of the GA-BP model,indicating that the dimension of variables is reduced and the prediction accuracy is increased through nonlinear principal component analysis.It can be concluded that the NPCA-GA-BP prediction method has a higher prediction accuracy of stope stability,and has certain guiding significance for realizing intelligent mine.
Raoqing XIE , Jianhong CHEN , Wenfeng XIAO . Prediction Method of Stope Stability Based on NPCA-GA-BP Neural Network[J]. Gold Science and Technology, 2022 , 30(2) : 272 -281 . DOI: 10.11872/j.issn.1005-2518.2022.02.052
埃及颁发8个新的金矿勘查许可证
据Mining.com网站援引路透社报道,埃及政府持续推进吸引外资投入采矿业计划,在东部沙漠地区已经授予了8个新的金和贱金属矿产勘查许可证。获得勘查许可证的公司包括莲金公司(Lotus Gold)、AKH黄金公司、海运金矿公司(Marine Logistics Gold Mining)和安赫资源公司(Ankh Resources)。这些公司加入了前往这个非洲国家勘探开发矿企的行列,巴里克黄金公司(Barrick Gold)、B2黄金公司和红海资源公司(Red Sea Resources)已在该国拥有勘查开发项目。
尽管储量丰富,采矿历史悠久,并曾铸就了精致的法老金首饰,但埃及目前只有一个商业金矿运营,即森塔明(Centamin)矿业公司的苏卡里(Sukari)金矿。缺少矿业活动的另外一个原因是该国过时的权利金制度以及利润共享协议。这使得矿业公司勘查开发难以获得利润。
2020年,埃及对矿业法进行了修改,剔除了对矿业公司必须与埃及政府成立合资企业的前提要求。另外,还将国家权利金税率最高限定在20%。该国还宣布即将举行一系列金矿招标,到现在为止招标活动既吸引了矿业巨头也吸引了初级公司。加拿大阿顿资源公司(Aton Resources)继2020年初获得一个许可证后,去年启动了一项雄心勃勃的钻探和开发计划,目标是开发埃及第二座金矿山。
这个连接东北非洲和中东的国家已经设定目标,希望在2030年前吸引新的能矿投资10亿美元。
http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-2-272.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
毕傲睿,骆正山,乔伟,等,2018.基于主成分和粒子群优化支持向量机的管道内腐蚀[J].表面技术,47(9):133-140.
|
|
龚剑,胡乃联,王孝东,等,2015.塌陷区下部采场顶板稳定性分析及岩移预测[J].采矿与安全工程学报,32(2):337-342.
|
|
关子奇,朱玉龙,刘晓光,等,2019.基于GA优化BP神经网络的焊接熔池照度建模[J].热加工工艺,48(7):216-220.
|
|
郭超,宋卫华,魏威,2014.基于网格搜索—支持向量机的采场顶板稳定性预测[J].中国安全科学学报,24(8):31-36.
|
|
胡洪旺,叶义成,耿宏波,等,2018.基于BP神经网络的层状矿床采空区稳定性评价研究[J].化工矿物与加工,47(3):60-63,69.
|
|
纪龙,申红芳,徐春春,等,2019.基于非线性主成分分析的绿色超级稻品种综合评价[J].作物学报,45(7):982-992.
|
|
康虞,王新民,张钦礼,等,2015.VW-UM模型在采场稳定性评价中得应用[J].中国安全科学学报,25(7):128-134.
|
|
雷定猷,马强,徐新平,等,2018.基于非线性主成分分析和GA-RBF的高速公路交通量预测方法[J].交通运输工程学报,18(3):210-217.
|
|
李启航,李小双,耿加波,等,2021.FLAC3D数值模拟露天转地下边坡及采场稳定性研究[J].有色金属(矿山部分),73(2):5-10.
|
|
李小贝,戴兴国,王新民,等,2015.基于CT-GRNN模型的采场顶板位移预测[J].矿冶工程,35(6):30-34.
|
|
凌标灿,彭苏萍,张慎河,等,2003.采场顶板稳定性动态工程分类[J].岩石力学与工程学报,(9):1474-1477.
|
|
甯瑜琳,姜凡均,林卫星,2019.黄岗铁矿采空区稳定性评价及治理方案研究[J].矿业研究与开发,39(8):74-77.
|
|
乔守乐,卿黎,梁志强,等,2018.基于FLAC3D和Monte Carlo法采场稳定性分析[J].矿冶,27(4):45-49.
|
|
邵良杉,徐波,2015.岩溶塌陷倾向性等级的KPCA-SVM预测模型[J].中国安全科学学报,25(3):60-65.
|
|
王杰,罗周全,秦亚光,等,2018.基于随机森林理论的采场稳定性预测研究[J].中国安全科学学报, 28(3):155-160.
|
|
王振华,龚殿尧,李广焘,等,2018.遗传算法优化神经网络的热轧带钢弯辊力预报模型[J].东北大学学报(自然科学版),39(12):1717-1722.
|
|
韦鹏宇,潘福成,李帅,2018.改进人工蜂群优化BP神经网络的分类研究[J].计算机工程与应用,54(10):158-163.
|
|
邬书良,陈建宏,杨珊,2012.基于主成分分析与BP网络的锚杆支护方案优选[J].工程设计学报,19(2):150-155.
|
|
张飞,杨天鸿,胡高建,2018.复杂应力扰动下围岩稳定性评价与采场参数优化[J].东北大学学报(自然科学版),39(5):699-704.
|
|
张钦礼,李谢平,杨伟,2013.基于BP网络的某矿山充填料浆配比优化[J].中南大学学报(自然科学版),44(7):2867-2874.
|
|
张思源,包燕平,张超杰,等,2017.BP神经网络IF钢铝耗的预测模型[J].工程科学学报,39(4):511-519.
|
|
赵广元,马霏,2018.粒子群算法优化BP神经网络的粉尘浓度预测[J].测控技术,37(6):20-23.
|
|
赵兴东,李怀宾,张姝婧,等,2020.青龙沟金矿露天转地下采场稳定性分析及控制[J].金属矿山,49(4):10-14.
|
/
| 〈 |
|
〉 |