img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

Prediction Method of Stope Stability Based on NPCA-GA-BP Neural Network

  • Raoqing XIE ,
  • Jianhong CHEN ,
  • Wenfeng XIAO
Expand
  • School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China

Received date: 2021-05-07

  Revised date: 2021-08-30

  Online published: 2022-06-17

Abstract

Stope stability is a geological mechanics problem that cannot be ignored in mining,and its stability directly affects the safety of mine production and engineering decision-making.Therefore,scientific prediction of stope stability plays a crucial role in mining safety.The stability of stope is a typical nonlinear problem.Since BP neural network has the virtue of tackling complex nonlinear systems,it can be applied to stope stability prediction.Nevertheless,the existing prediction methods either only focus on optimizing the weights and thresholds of the neural network or only consider that the stability of the stope is under the influence of multiple factors and the influencing indexes have a strong correlation,but do not consider the two methods in an integrated manner.Hence,the prediction accuracy of stope stability based on neural network is low,which cannot provide valid support for mine management.Due to the highly nonlinear characteristics of the mining stability system,the traditional principal component analysis will lose a large amount of information.Therefore,we propose a stope stability prediction method using nonlinear principal component analysis combined with BP neural network optimized by the genetic algorithm,which effectively improves the prediction accuracy of stope stability.The nonlinear principal component analysis method performs nonlinear dimensionality reduction on the impact indicators of stope stability,replacing the original multiple indicators with a few principal components that retain the original information,simplifying the neural network structure,and improving the operational efficiency.GA aims to optimize the initial weights and thresholds of the BP neural network to overcome the defects of unstable initial weight thresholds and further improve the accuracy of quarry stability prediction.Taking the measured data of a mine as an example,the effectiveness of the proposed method is verified.The comparison results show that the average relative errors of NPCA-GA-BP and GA-BP models are 10.5% and 7.6% lower than those of BP models,respectively,indicating that the BP neural network is optimized by the genetic algorithm can significantly improve the prediction accuracy.The average relative error of the NPCA-GA-BP model is 2.9% lower than that of the GA-BP model,indicating that the dimension of variables is reduced and the prediction accuracy is increased through nonlinear principal component analysis.It can be concluded that the NPCA-GA-BP prediction method has a higher prediction accuracy of stope stability,and has certain guiding significance for realizing intelligent mine.

Cite this article

Raoqing XIE , Jianhong CHEN , Wenfeng XIAO . Prediction Method of Stope Stability Based on NPCA-GA-BP Neural Network[J]. Gold Science and Technology, 2022 , 30(2) : 272 -281 . DOI: 10.11872/j.issn.1005-2518.2022.02.052

References

null Bi Aorui, Luo Zhengshan, Qiao Wei,et al,2018.Prediction of pipeline inner-corrosion based on principal component analysis and particle swarm optimization-support vector machine[J].Surface Technology,47(9):133-140.
null Ding S, Zhang Y, Chen J,et al,2013.Research on using genetic algorithms to optimize Elman neural networks [J].Neural Computing and Applications,23(2):293-297.
null Erten G E, Keser S B, Yavuz M,2021.Grid search pptimised artificial neural network for open stope stability prediction[J].International Journal of Mining, Reclamation and Environment,35(8):600-617.
null Gong Jian, Hu Nailian, Wang Xiaodong,et al,2015.Stability analysis and rock movement prediction of stope roof below the subsidence area [J].Journal of Mining & Safety Engineering,32(2):337-342.
null Guan Ziqi, Zhu Yulong, Liu Xiaoguang,et al,2019.Modeling of weld pool illumination based on GA optimizing BP neural network [J].Hot Working Technology,48(7):216-220.
null Guo Chao, Song Weihua, Wei Wei,2014.Stope roof stability prediction based on both SVM and grid-search method [J].China Safety Science Journal,24(8):31-36.
null Hu Hongwang, Ye Yicheng, Geng Hongbo,et al,2018.Study on stability evalution of layered deposit goaf based on BP neural network[J].Industrial Minerals & Processing, 47(3):60-63,69.
null Ilonen J, Kamarainen J K, Lampinen J,2003.Differential evolution training algorithm for feed-forward neural networks[J].Neural Processing Letters,17(1):93-105.
null Ji Long, Shen Hongfang, Xu Chunchun,et al,2019.Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis[J].Acta Agronomica Sinica,45(7):982-992.
null Kang Yu, Wang Xinmin, Zhang Qinli,et al,2015.Application of VW-UM model in stope stability evaluation[J].China Safety Science Journal,25(7):128-134.
null Lei Dingyou, Ma Qiang, Xu Xinping,et al,2018.Forecasting method of expressway traffic volume based on NPCA and GA-RBF[J].Journal of Traffic and Transportation Engineering,18(3):210-217.
null Li Qihang, Li Xiaoshuang, Geng Jiabo,et al,2021.FLAC3D numerical simulation of open-pit transformation to underground slope and stability[J].Nonferrous Metals(Mining Section), 73(2):5-10.
null Li Xiaobei, Dai Xingguo, Wang Xinmin,et al,2015.Prediction of stope roof displacement based on CT-GRNN[J].Mining and Metallurgical Engineering,35(6):30-34.
null Lima D C L, Limao D O R, Roisenberg M,2016.Optimization of neural networks through grammatical evolution and a genetic algorithm[J].Expert Systems with Applications,56(2):368-384.
null Ling Biaocan, Peng Suping, Zhang Shenghe,et al,2003.Dynamic engineering classification of stope roof stability [J].Chinese Journal of Rock Mechanics and Engineering,(9):1474-1477.
null Ning Yulin, Jiang Fanjun, Lin Weixing,2019.Study on stability evaluation and treatment scheme of goaf in Huanggang iron mine[J].Mining Research and Development,39(8):74-77.
null Oo C T, Sasaoka T, Shimada H,et al,2021.Evaluation of stope stability in underground mine;Hermyingyi(Sn-W deposit)mine in Myanmar [J].Journal of Geoscience and Environment Protection,9(1):107-120.
null Qiao Shoule, Li Qing, Liang Zhiqiang,et al,2018.Mining field stability analysis based on FLAC3D and Monte Carlo method[J].Mining and Metallurgy,27(4):45-49.
null Santos J, Ferreira A, Flintsch G,2019.An adaptive hybrid genetic algorithm for pavement management[J].International Journal of Pavement Engineering,20(3):226-286.
null Shao Liangshan, Xu Bo,2015.KPCA-SVM model for predicting Karst collapse tendency level[J].China Safety Science Journal,25(3):60-65.
null Wang J, Fang J D, Zhao Y D,2019.Visual prediction of gas diffusion concentration based on regression analysis and BP neural network[J].The Journal of Engineering,(13):19-23.
null Wang Jie, Luo Zhouquan, Qin Yaguang,et al,2018.Prediction of stope stability based on random forest[J].China Safety Science Journal,28(3):155-160.
null Wang Zhenhua, Gong Dianyao, Li Guangtao,et al,2018.Bending force prediction model in hot strip rolling based on artificial neural network optimize by genetic algorithm[J].Journal of Northeastern University( Natural Science),39(12):1717-1722.
null Wei Pengyu, Pan Fucheng, Li Shuai,2018.Study on classification of improved artificial bee colony algorithm to optimi-zation of BP neural network[J].Computer Engineering and Applications,54(10):158-163.
null Wu Shuliang, Chen Jianhong, Yang Shan,2012.Optimization of bolting scheme based on combination of principal component analysis and BP neural network [J].Chinese Journal of Engineering Design,19(2):150-155.
null Zhang Fei, Yang Tianhong, Hu Gaojian,2018.Stability evaluation of surrounding rock and parameter optimization of stope under complex stress disturbance[J].Journal of Nor-theastern University(Natural Science),39(5):699-704.
null Zhang Qinli, Li Xieping, Yang Wei,2013.Optimization of filling slurry ratio in a mine based on back-propagation neural network [J].Journal of Central South University (Science and Technology),44(7):2867-2874.
null Zhang Siyuan, Bao Yanping, Zhang Chaojie,et al,2017.Prediction model of aluminum consumption with BP neural networks in IF steel production[J].Chinese Journal of Engineering,39(4):511-519.
null Zhao Guangyuan, Ma Fei,2018.Prediction of dust concentration based on particle swarm optimization BP neural network [J].Measurement & Control Technology,37(6):20-23.
null Zhao Xingdong, Li Huaibin, Zhang Shujing,et al,2020.Analyzing and controlling the stope stability from open-pit to underground mining in Qinglonggou gold mine[J].Metal Mine,49(4):10-14.
null 毕傲睿,骆正山,乔伟,等,2018.基于主成分和粒子群优化支持向量机的管道内腐蚀[J].表面技术,47(9):133-140.
null 龚剑,胡乃联,王孝东,等,2015.塌陷区下部采场顶板稳定性分析及岩移预测[J].采矿与安全工程学报,32(2):337-342.
null 关子奇,朱玉龙,刘晓光,等,2019.基于GA优化BP神经网络的焊接熔池照度建模[J].热加工工艺,48(7):216-220.
null 郭超,宋卫华,魏威,2014.基于网格搜索—支持向量机的采场顶板稳定性预测[J].中国安全科学学报,24(8):31-36.
null 胡洪旺,叶义成,耿宏波,等,2018.基于BP神经网络的层状矿床采空区稳定性评价研究[J].化工矿物与加工,47(3):60-63,69.
null 纪龙,申红芳,徐春春,等,2019.基于非线性主成分分析的绿色超级稻品种综合评价[J].作物学报,45(7):982-992.
null 康虞,王新民,张钦礼,等,2015.VW-UM模型在采场稳定性评价中得应用[J].中国安全科学学报,25(7):128-134.
null 雷定猷,马强,徐新平,等,2018.基于非线性主成分分析和GA-RBF的高速公路交通量预测方法[J].交通运输工程学报,18(3):210-217.
null 李启航,李小双,耿加波,等,2021.FLAC3D数值模拟露天转地下边坡及采场稳定性研究[J].有色金属(矿山部分),73(2):5-10.
null 李小贝,戴兴国,王新民,等,2015.基于CT-GRNN模型的采场顶板位移预测[J].矿冶工程,35(6):30-34.
null 凌标灿,彭苏萍,张慎河,等,2003.采场顶板稳定性动态工程分类[J].岩石力学与工程学报,(9):1474-1477.
null 甯瑜琳,姜凡均,林卫星,2019.黄岗铁矿采空区稳定性评价及治理方案研究[J].矿业研究与开发,39(8):74-77.
null 乔守乐,卿黎,梁志强,等,2018.基于FLAC3D和Monte Carlo法采场稳定性分析[J].矿冶,27(4):45-49.
null 邵良杉,徐波,2015.岩溶塌陷倾向性等级的KPCA-SVM预测模型[J].中国安全科学学报,25(3):60-65.
null 王杰,罗周全,秦亚光,等,2018.基于随机森林理论的采场稳定性预测研究[J].中国安全科学学报, 28(3):155-160.
null 王振华,龚殿尧,李广焘,等,2018.遗传算法优化神经网络的热轧带钢弯辊力预报模型[J].东北大学学报(自然科学版),39(12):1717-1722.
null 韦鹏宇,潘福成,李帅,2018.改进人工蜂群优化BP神经网络的分类研究[J].计算机工程与应用,54(10):158-163.
null 邬书良,陈建宏,杨珊,2012.基于主成分分析与BP网络的锚杆支护方案优选[J].工程设计学报,19(2):150-155.
null 张飞,杨天鸿,胡高建,2018.复杂应力扰动下围岩稳定性评价与采场参数优化[J].东北大学学报(自然科学版),39(5):699-704.
null 张钦礼,李谢平,杨伟,2013.基于BP网络的某矿山充填料浆配比优化[J].中南大学学报(自然科学版),44(7):2867-2874.
null 张思源,包燕平,张超杰,等,2017.BP神经网络IF钢铝耗的预测模型[J].工程科学学报,39(4):511-519.
null 赵广元,马霏,2018.粒子群算法优化BP神经网络的粉尘浓度预测[J].测控技术,37(6):20-23.
null 赵兴东,李怀宾,张姝婧,等,2020.青龙沟金矿露天转地下采场稳定性分析及控制[J].金属矿山,49(4):10-14.
Outlines

/