[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Mine-Loading Measurement System of Underground Locomotive Based on Image Recognition
Received date: 2021-09-26
Revised date: 2022-01-10
Online published: 2022-04-25
The ore yield is an important standard for mining enterprises to formulate production plans.At present,the vast majority of underground mines estimate ore yield by manually counting the number of ore carrying vehicles.The measurement error is large,which seriously affects the enterprises to formulate production plans.In order to solve the problem of large measurement error and improve the accuracy of ore yield estimation,a set of underground machine on-board ore yield measurement system based on image recognition was designed and developed in this paper.In this paper,the method of image recognition combined with density model modeling was used to form a volume model through three-dimensional reconstruction of ore pile image information,and an image feature density library was built to form a complete set of underground machine on-board ore quantity measurement system.The system collects the internal image of the locomotive ore bucket through the depth camera,then extracts the feature information of the image and compares it with the image feature density library to obtain the density of the ore in the current ore bucket, and then generates a volume model from the three-dimensional reconstruction of the image to calculate the volume of the ore pile,and calculates the product of the volume and density of the ore pile to obtain the weight of the ore pile.The field repeated tests show that the metering system operates stably and reliably,and the calculation error of locomotive ore load is less than 5%.It solves the problem of ore yield estimation in mining enterprises,improves the calculation accuracy of ore yield,and brings detailed and reliable data for enterprises to formulate production plans.
Yupeng ZHANG , Fuji WU , Yi GUO . Mine-Loading Measurement System of Underground Locomotive Based on Image Recognition[J]. Gold Science and Technology, 2022 , 30(1) : 131 -140 . DOI: 10.11872/j.issn.1005-2518.2022.01.135
生态环境部:加强固体废物污染防治和新污染物治理
3月30日,生态环境部召开3月例行新闻发布会,生态环境部固体废物与化学品司司长任勇介绍,今年乃至“十四五”一段时间内,固体废物与化学品环境管理工作将坚持稳中求进的工作总基调,做到四个“坚持”。
任勇表示,固体废物污染防治,一头连着减污,一头连着降碳,是生态文明建设的重要内容,也是深入打好污染防治攻坚战的重要任务。努力让城乡“无废”、环境健康安全是实现美丽中国建设目标的重要方面。
任勇指出,2022年是全面落实“十四五”生态环境保护各项决策部署的关键之年,固体废物与化学品环境管理工作的总体要求是,全面落实全国生态环境保护工作会议安排部署,把握一个“总基调”,做到四个“坚持”。总基调就是坚持稳中求进的工作总基调,四个“坚持”即坚持更加突出精准、科学、依法治污的工作方针,坚持固体废物污染防治“减量化、资源化、无害化”的工作原则,坚持打牢基础、健全体系、严守底线、防控风险、改革创新的工作思路,坚持突出重点,统筹兼顾,系统推进的工作方法。
对于重点工作任务的安排,任勇介绍,可以概括为:抓好两条主线,守住一个底线,突出两个抓手。在两个主线中,一个就是对从固体废物,特别是危险废物产生、收集、贮存、转移到利用处置强化全链条环境监管。另一个主线就是对有毒有害化学物质强化全生命周期环境风险管理。
“我们守住一条‘底线’,就是要严守危险废物、尾矿库、化学品、重金属,就是我们通常说的‘一废一库一品一重’的生态环境风险这条‘底线’。突出两个抓手,一个是新污染物治理,一个是‘无废城市’建设。这样,确保我们全面完成深入打好污染防治攻坚战意见和‘十四五’生态环境保护规划所确定的有关工作任务。持续提升固体废物与化学品环境治理体系和治理能力。”任勇说。
在介绍工作的目标要求时,任勇表示,可以概括为:改善生态环境质量、助推绿色低碳循环发展、维护健康安全。首先,要有效防控固体废物和有毒有害化学物质环境污染,拓展和延伸深入打好污染防治攻坚战的广度和深度,推进生态环境质量持续改善;其次,充分发挥固体废物减量化、资源化、无害化在减污降碳协同增效方面的重要作用,助推绿色低碳循环发展;第三,有效防控生态环境风险,切实维护人民群众健康和生态环境安全,以优异成绩迎接党的二十大胜利召开。
http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-1-131.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
陈绍杰,李光丽,张伟,等,2011.基于多分类器集成的煤矿区土地利用遥感分类[J].中国矿业大学学报,40(2):273-278.
|
戴昌璐,2020.XRT射线及图像智能选矿机在黑钨矿山的综合运用探索[J].中国金属通报,(11):187-188.
|
第旺平,吴志虎,2021.智能光电选矿预选抛废技术研究及应用[J].有色金属(选矿部分),(1):117-121.
|
杜培军,柳思聪,郑辉,2012.基于支持向量机的矿区土地覆盖变化检测[J].中国矿业大学学报,41(2):262-267.
|
郭毅,吴富姬,钟毅,等,2021.基于图像识别技术的翻斗式矿车结底智能清理装置研究[J].中国钨业,36(2):76-80.
|
贺杰,王桂梅,刘杰辉,等,2020.基于图像处理的皮带机上煤量体积计量[J].计量学报,41(12):1516-1520.
|
李国清,李宝,胡乃联,等,2017.地下金属矿山采掘作业计划优化模型[J].工程科学学报,39(3):342-348.
|
李和仙,2020.CCD相机的微距测量补光装置设计[J].重庆科技学院学报(自然科学版),22(2):93-96.
|
李兴东,张睿,2021.关于微元法及其原理的探讨[J].高等数学研究,24(1):80-83.
|
梁乐,2019.基于双目立体视觉的不规则物体体积测量方法研究[D].西安:西安理工大学.
|
令晓明,郭锐辛,刘光廷,等,2021.基于PCA降维的多特征级联的行人检测研究[J].制造业自动化,43(3):32-34,76.
|
任智伟,吴玲达,2018.基于信息量改进主成分分析的高光谱图像特征提取方法[J].兵器装备工程学报,39(7):151-154.
|
田甜,2011.基于图像处理技术的煤岩分析及煤堆体积测量[D].太原:太原理工大学.
|
汪钇鑫,2016.深度图像处理在车辆识别中的应用[J].价值工程,35(25):236-238.
|
王芳,2020.基于机器视觉的黑钨矿石初选系统研究[D].赣州:江西理工大学.
|
王君,蒲磊,何新宇,等,2021.多生物特征融合的矿井人员身份识别[J].科技通报,37(3):44-49.
|
王李管,陈斯佳,贾明滔,等,2020.基于深度学习的黑钨矿图像识别选矿方法[J].中国有色金属学报,30(5):1192-1201.
|
王耀革,张冬燕,张宁,2020.微元分析法探究[J].高等数学研究,23(6):7-9,20.
|
肖继伟,2019.基于机器视觉的黑钨矿石智能分选系统研究与设计[D].长沙:湖南大学.
|
杨博雄,杨雨绮,2019.利用PCA进行深度学习图像特征提取后的降维研究[J].计算机系统应用,28(1):279-283.
|
杨锦涛,2019.矿山工矿电机车研究与发展[J].世界有色金属,4(4):234,236.
|
杨文龙,马保亮,陈辰,2019.基于深度相机的矿斗载矿量的测量方法[J].中国钨业,34(6):69-74.
|
叶正麟,林伟,2020.微元法在一些积分问题中的应用[J].高等数学研究,23(4):32-37.
|
张爱华,唐婷婷,汪玮玮,等,2018.基于主成分特征的快速分形图像压缩算法[J].计算机技术与发展,28(5):77-80,85.
|
张豪,张强,李勇祥,等,2021.基于深度学习的三维模型重构研究[J].重庆邮电大学学报(自然科学版),33(2):289-295.
|
张建立,叶平坤,孙深深,2020.形态学图像处理下的矿石粒度的检测[J].机械设计与制造,4(3):68-71.
|
张健,2017.旋转体体积计算中的微元法思想应用[J].大学数学,33(4):104-110.
|
张小牛,2016.螺旋式清理矿车结底车液压控制系统的设计[J].机电产品开发与创新,29(4):102-103,22.
|
张泽琳,杨建国,苏晓兰,等,2013.基于图像分析的粗粒煤堆密度组成估计[J].中国矿业大学学报,42(5):851-858.
|
/
〈 |
|
〉 |