img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

Experimental Study on Rock Burst Tendency and Acoustic Emission Characteristics of Limestone at Different Buried Depths

  • Qiang ZENG ,
  • Xiaorong HUANG ,
  • Xiaojun WANG ,
  • Qinglin CHEN ,
  • Jian LIU ,
  • Cong GONG
Expand
  • 1.School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
    2.Jiangxi Provincial Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
    3.No. 1 Nonferrous Geological Team, Jiangxi Bureau of Geology, Yingtan 335000, Jiangxi, China

Received date: 2021-03-23

  Revised date: 2021-05-21

  Online published: 2022-03-07

Abstract

With the increasing demand for mineral resources,deep mining is becoming more and more popular in mines and rock burst disasters are becoming more and more frequent. Rock burst warning and prevention have become one of the major safety issues that need to be solved in the field of geotechnical engineering in the world today. The acoustic emission of rock is an effective carrier to reflect the internal damage information of rock. The study on the characteristics of acoustic emission parameters in the process of rock burst rupture and instability provides a theoretical basis for the early warning of rock burst by acoustic emission parameters in deep mining. Limestone core samples were obtained from the same borehole at different depths in a copper mine. By carrying out conventional uniaxial tests of limestone with different buried depths,the stress-strain curve and acoustic emission time-domain characteristic parameters in the limestone failure process were obtained; the elastic energy index WETdeformation brittleness index Kε and linear elastic energy Weindex were used to distinguish Limestone rock burst tendency of different buried depths; By analyzing the characteristic parameters of acoustic emission in the failure process of limestone and their changing laws,the precursor information characteristics of rock bursts were established. The results show that with the depth gradient increases,when the buried depth is more than 1 000 m,the limestone has a strong rock burst tendency.The accumulative energy-time variation curve of acoustic emission during the compressive failure of lime stones at different depths can be divided into three stages,namely,steady stage,growth stage and failure stage. The stable stage is in the initial compaction stage of limestone. As the tendency of limestone rock burst becomes stronger,the axial strain corresponding to the acoustic emission energy at this stage becomes smaller. The growth stage is the expansion stage of new fissures in the limestone rock. The cumulative acoustic emission energy changes with the depth of the burial depth and presents a “step-like”evolution to a “smooth”growth form,and the failure stage is the stage of macroscopic cracks causing rock mass destruction. In this stage,as the tendency of limestone rock burst gradually increases,the energy released by rock burst increases.The dominant frequency of each deep limestone sample is mainly the low frequency band of 90~180 kHz,while the medium and strong rock burst tendencies have a high frequency secondary frequency of 270~330 kHz.The fractal characteristics of the acoustic emission energy rate of limestone under the depth gradient are consistent with the evolution law of its internal fissures.The evolution mode of fractal dimension value of limestone rock burst tendency from weak to strong at different depths is based on “up-dimension-wave-dimension reduction”.The evolution of “steady-dimensional reduction” can provide a theoretical basis for early warning of rock burst in deep mining.

Cite this article

Qiang ZENG , Xiaorong HUANG , Xiaojun WANG , Qinglin CHEN , Jian LIU , Cong GONG . Experimental Study on Rock Burst Tendency and Acoustic Emission Characteristics of Limestone at Different Buried Depths[J]. Gold Science and Technology, 2021 , 29(6) : 863 -873 . DOI: 10.11872/j.issn.1005-2518.2021.06.043

References

null Changjiang River Scientific Research Institute of Changjiang Water Resources Commission. Standard for engineering classification of rock masses: [S].Beijing:China Planning Press,2015.
null Chen Bingrui, Wei Fanbo, Wang Rui, al et,2020.Failure mechanisms and precursory characteristics of deep buried granite in a tunnel in Southwest[J].Chinese Journal of Rock Mechanics and Engineering,39(3):469-479.
null Cong Yu, Feng Xiating, Zheng Yingren, al et,2016.Experimental study on acoustic emission failure precursors of marble under different stress paths[J].Chinese Journal of Geotechnical Engineering,38(7):1193-1201.
null Ding Xin, Xiao Xiaochun, Xiangfeng Lü, al et,2018.Investigate on the fractal characteristics and acoustic emission of coalfracture[J]. Journal of China Coal Society,43(11):3080-3087.
null Feng X Y, Yu Y, Feng G L, al et,2016.Fractal behaviour of the microseismic energy associated with immediate rockbursts in deep,hard rock tunnels[J].Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,51:98-107.
null Feng Xiating, Xiao Yaxun, Feng Guangliang, al et,2019.Study on the development process of rock bursts[J].Chinese Jo-urnal of Rock Mechanics and Engineering,38(4):649-673.
null Grassberger P, Pocaccia I,1983.Characterization of strange attractors[J].Physical Review Letters,50(5):346-349.
null Guo Jianqiang, Zhao Qing, Wang Junbao, al et,2015.Rockburst prediction based on elastic strain energy[J].Chinese Journal of Rock Mechanics and Engineering,34(9):164-171.
null Ji Hongguang, Wang Jicai, Shan Xiaoyun, al et,2001.Fractal characteristics of AE process of concrete material and application to the fracture analyses[J].Chinese Journal of Rock Mechanics and Engineering,20(6):801-804.
null Koerner R M, Mccabe W M, Lord A E,1981.Overview of acoustic emission monitoring of rock structures[J].Rock Mecha-nics and Rock Engineering,14(1):27-35.
null Li D J, Miao J L,2009. Acoustic emission and infrared characteristics of coal burst process[C]//Controlling Seismic Ha-zard & Sustainable Development of Deep Mines,Beijing:Chinese Society for Rock Mechanics & Engineering: 1341-1346.
null Liu Quansheng, Wei Lai, Lei Guangfeng, al et,2018.Experimental study on crack initiation crack damage strength and brittle parameters evaluation of sandstone[J].Chinese Jou-rnal of Geotechnical Engineering,40(10):1782-1789.
null Lu C P, Dou L M, Liu H, et a 1,2012.Case study on microseismic effect of coal and gas outburst process[J].International Journal of Rock Mechanics and Mining Sciences,53:101-110.
null Mandelbrot B B,1982.The Fractal Geometry of Nature[M].New York:W H.Freeman and Compan:25- 50.
null Niu W J, Feng X T, Xiao Y X, al et,2020.Identification of potential high-stress hazards in deep-buried hard rock tunnebased on microseismic information:a case study[J].Bulletin of Engineering Geology and the Environment,(7):1-21.
null Pei Jianliang, Liu Jianfeng, Zhang Ru, al et,2010.Fractal study on spatial distribution of acoustic emission events of granite specimens under uniaxial compression[J].Journal of Sichuan University,42(6):51-55.
null Sun H, Liu X L, Zhu J B,2019.Correlational fractal characterisation of stress and acoustic emission during coal and rock failure under multilevel dynamic loading[J].International Journal of Rock Mechanics and Mining Sciences,117:1-10.
null Wang Chuangye, Chang Xinke, Liu YiLin,2018.Study on the fractal characteristics of acoustic emission sequence in the whole process of uniaxial compression fracture of different rocks[J].China Tungsten Industry,33(5):21-28.
null Wu Xianzhen, Liu Xiangxin, Liang Zhengzhao, al et,2012.Experimental study of fractal dimension of AE serials of different rocks under uniaxial compression[J].Rock and Soil Mechanics,33(12):3561-3569.
null Xiao Yaxun, Feng Xiating, Chen Bingrui, al et,2015.Evolution of frequency spectrum during instant rockbursts in deep inoculation tunnel[J].Rock and Soil Mechanics,36(4):1127-1134.
null Xu Dongqiang, Shan Xiaoyun, Zhang Yanbo,2000.Analysis of the mechanics of rock burst by rock AE and rock damage[J].Nonferrous Metals(Mining Section),(3):28-30,16.
null Xu J H, Kang Y, Liu F, al et,2021. Mechanical properties and fracture behavior of flawed granite under dynamic loading[J].Soil Dynamics and Earthquake Engineering,142:106569. .
null Yang Jian, Wang Lianjun,2005.Study on mechanish of rock burst by acoustic emission testing[J].Chinese Journal of Rock Mechanics and Engineering,24(20):3796-3796.
null Yin Xiangang, Li Shulin, Tang Haiyan,2005.Study on strength fractal features of acoustic emission in process of rock failure[J].Chinese Journal of Rock Mechanics and Engineering,24(19):114-118.
null Zhang Chuanqing, Lu Jingjing, Chen Jun, al et,2017.Discussion on rock burst proneness indexes and their relation[J].Rock and Soil Mechanics,38(5):1397-1404.
null Zhang Liming, Ren Mingyuan, Ma Shaoqiong, al et,2015.Acoustic emission and fractal characteristics of marble during unloading failure process[J].Chinese Journal of Rock Mechanics and Engineering,34(Suup.1):2862-2867.
null Zhang S W, Shou K J, Xian X F, al et,2018.Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests[J]. Tunnelling and Underground Space Technology,71(1):298-308.
null Zhao Kui, Wang Gengfeng, Wang Xiaojun, al et,2008.Research on energy distributions and fractal characteristics of Kaiser signal of acoustic emission in rock[J].Rock and Soil Mechanics,29(11):3082-3088.
null 长江水利委员会长江科学院,2015. 工程岩体分级标准: [S].北京:中国计划出版社.
null 陈炳瑞,魏凡博,王睿,等,2020.西南地区某深埋隧道花岗岩破坏机制与前兆特征研究[J].岩石力学与工程学报,39(3):469-479.
null 丛宇,冯夏庭,郑颖人,等,2016.不同应力路径大理岩声发射破坏前兆的试验研究[J].岩土工程学报,38(71):193 -1201.
null 丁鑫,肖晓春,吕祥锋,等,2018.煤体破裂分形特征与声发射规律研究[J].煤炭学报,43(11):3080-3087.
null 冯夏庭,肖亚勋,丰光亮,等,2019.岩爆孕育过程研究[J].岩石力学与工程学报,38(4):649-673.
null 郭建强,赵青,王军保,等,2015.基于弹性应变能岩爆倾向性评价方法研究[J].岩石力学与工程学报,34(9):164-171.
null 纪洪广,王基才,单晓云,等,2001.混凝土材料声发射过程分形特征及其在断裂分析中的应用[J].岩石力学与工程学报,20(6):801-804.
null 刘泉声,魏莱,雷广峰,等,2018.砂岩裂纹起裂损伤强度及脆性参数演化试验研究[J].岩土工程学报,40(10):1782-1789.
null 裴建良,刘建锋,张茹,等,2010.单轴压缩条件下花岗岩声发射事件空间分布的分维特征研究[J].四川大学学报,42(6):51-55.
null 王创业,常新科,刘沂琳,2018.不同岩石单轴压缩破裂全过程声发射序列分形特征研究[J].中国钨业,33(5):21-28.
null 吴贤振,刘祥鑫,梁正召,等,2012.不同岩石破裂全过程的声发射序列分形特征试验研究[J].岩土力学,33(12):3561-3569.
null 肖亚勋,冯夏庭,陈炳瑞,等,2015.深埋隧洞即时型岩爆孕育过程的频谱演化特征[J].岩土力学,36(4):1127-1134.
null 徐东强,单晓云,张艳博,2000.用岩石声发射与岩石损伤分析岩爆发生机制[J].有色金属(矿山部分),(3):28-30,16.
null 杨健,王连俊,2005.岩爆机理声发射试验研究[J].岩石力学与工程学报,24(20):3796-3796.
null 尹贤刚,李庶林,唐海燕,2005.岩石破坏声发射强度分形特征研究[J].岩石力学与工程学报,14(19):114-118.
null 张传庆,卢景景,陈珺,等,2017.岩爆倾向性指标及其相互关系探讨[J].岩土力学,38( 5):1397-1404.
null 张黎明,任明远,马绍琼,等,2015.大理岩卸围压破坏全过程的声发射及分形特征[J].岩石力学与工程学报,34(增1):2862-2867.
null 赵奎,王更峰,王晓军,等,2008.岩石声发射Kaiser点信号频带能量分布和分形特征研究[J].岩土力学,29(11):3082-3088.
Outlines

/