[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Mining Technology and Mine Management

Evaluation of Mine Rockburst Tendency Based on the Distance Discrimination Analysis

  • Guoyan ZHAO , 1 ,
  • Chengkai DANG , 1 ,
  • Huanxin LIU 2 ,
  • Yang LIU 2 ,
  • Quri XIAO 1 ,
  • Yang LI 1 ,
  • Liqiang CHEN 1 ,
  • Wenjie MAO 1
Expand
  • 1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • 2. Deep Mining Laboratory of Shandong Gold Group Co. ,Ltd. ,Laizhou 261442,Shandong,China

Received date: 2020-10-28

  Revised date: 2021-08-16

  Online published: 2021-12-17

Highlights

Rockburst as a common ground pressure disaster in deep mining,always affect the safety of underground staff,its unique suddenness makes the evaluation of rock explosion tendency become a subject that countless scholars continue to explore.Mathematical methods are widely used in this field.Distance judgment analysis is applied to academic and engineering by many scholars with its unique judgment algorithm.In order to scientifically and effectively apply the distance discriminant analysis method to evaluate the deep rockburst tendency grade of a certain mine,brought together a large number of domestic and international mine rock burst data,and combined with the mine deep situation,six rock burst tendency index were determined.9 sites were selected to be tested at the mine, and the aesthetic experiment was carried out to obtain the rockbrust index of the location of the belt.The Mahalanobis distance theory was used to establish a judgment criterion to determine rock burst tendency of the test data,and the accuracy of the judgment criterion was tested by the back-substitution misjudgment rate and the cross misjudgment rate.The evaluation results are consistent with the actual situation of the mine.The results show thatthe tendency of rockbrust at the site of X2,X3,X4,X5,X7,X8 and X9 to be measured at a metal mine is in the slight level of rockbrust grade,the tendency of rockbrust at the site of X6 is in the medium level of rockbrust grade,the tendency of rockbrust at the site of X1 is in the high level of rockbrust grade.The actual situation of the mine shows that high rockbrust phenomenon occur at the site of X1.Research shows the method has good applicability and effectiveness in the evaluation of mine rockburst tendency.

Cite this article

Guoyan ZHAO , Chengkai DANG , Huanxin LIU , Yang LIU , Quri XIAO , Yang LI , Liqiang CHEN , Wenjie MAO . Evaluation of Mine Rockburst Tendency Based on the Distance Discrimination Analysis[J]. Gold Science and Technology, 2021 , 29(5) : 690 -697 . DOI: 10.11872/j.issn.1005-2518.2021.05.190

[an error occurred while processing this directive]

http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-5-690.shtml

Bai Mingzhou Wang Lianjun Xu Zhaoyi2002.Study on a neural network model and its application in prediction the risk of rock blast[J].Chinese Journal of Safety Sciences12(4):68-72.

Bi Aorui Luo Zhengshan Wang Xiaowan al et2018.Extension model weighted by vague sets and entropy method and its engineering application[J].Systems Engineering36(2):112-120.

Chen Jianhong Yu Caoyuan Deng Dongsheng2017.Risk assessment of bedded rock roadway roof fall based on AHP and matter-element TOPSIS method[J].Gold Science and Technology25(1):55-60.

Fengqiang Gon Li Xibing2007.A distance discriminant analysis method for prediction of possibility and classification of rockburst and its application[J].Journal of Rock Mechanicals and Engineering26(5):1012-1018.

Huang Yuren Mao Jianxi Lin Chaoyang al et2014. The multi-criteria evaluation of rockburst proneness on deep buried large tunnel[J].Journal of Railway Engineering Science31(7):89-94.

Li C C2020.Principles and methods of rock support for rockburst control[J].Journal of Rock Mechanics and Geotechnical Engineering,11:1-15.

Li Kegang Li Mingliang Qin Qingci2020.Research on evaluation method of rock burst tendency based on improved comprehensive weighting[J].Chinese Journal of Rock Mechanics and Engineering39(1):2751-2762.

Li Ning Wang Li Guan Jia Mingtao2017. Rockburst prediction based on rough set theory and support vector machine[J].Journal of Central South University(Sciences and Technology)48(5):1268-1275.

Li Pengxiang Chen Bingrui Zhou Yangyi al et2019.Research progress of rockburst prediction and early warning in hard rock underground engineering[J].Journal of China Coal Society44(Supp.2):447-465.

Li Renhao Gu Helong Li Xibing al et2020.A PSO-RBF neural network model for rockburst Tendency prediction[J].Gold Science and Technology28(1):134-141.

Li Shulin Feng Xiating Wang Yongjia al et2001.Evaluation of rockburst proneness in a deep hard rock mine[J].Journal of Northeastern university22(1):60-63.

Li Tongtong Wang Xi Liu Huanxin al et2020.Research and application of T-FME rockburst propensity prediction model based on combination weighting[J].Gold Science and Technology28(4):565-574.

Sun Chensheng2019. A prediction model of rock burst in tunnel based on the improved MATLAB-BP neural network[J].Journal of Chongqing Jiaotong University (Natural Sciences)38(10):41-49.

Tang Zhili Xu Qianjun2020. Rockburst prediction based on nine machine learning algorithms[J].Chinese Journal of Rock Mechanics and Engineering39(4):773-781.

Tian Rui Meng Haidong Chen Shijiang al et2020.Comparative study on three rockburst prediction models of intensity classification based on machine learning[J].Gold Science and Technology28(6):920-926.

Wang Jin Li Xibing Yang Jinlin2011.A weighted Mahalanobis distance discriminant analysis for predicting rock-burst in deep hard rocks test results [J].Journal of Mining and Safety Engineering28(3):395-400.

Wen Z J Wang X Tan Y L al et2016.A study of rockburst hazard evaluation method in coal mine[J].Shock and Vibration,pt.4:1-9.

Wu Libin Li Boying Zhang Kongsheng al et2017.MATLAB Data Analysis Methods[M].Beijing:China Machine Press:111-145.

Xie Xuebin Li Dexuan Kong Lingyan al et2020.Rockburst propensity prediction model based on CROTIC-XGB algorithm[J].Chinese Journal of Rock Mechanics and Engineering39(10):1975-1982.

Xu Rui Hou Kuikui Wang Xi al et2020.Combined prediction model of rockburst intensity based on kernel principal component analysis and SVM[J].Gold Science and Technology28(4):575-584.

Yi Yongliang Cao Ping Pu Chengzhi2010.Multi-factorial comprehensive estimation for Jinchuan’s deep typical rockburst tendency[J].Science and Technology Review28(2):76-80.

Zhao H B Chen B R2020.Data-driven model for rockburst pre-diction[J].Mathematical Problems in Engineering,(4):1-14.

Zhao H B Chen B R Zhu C X al et2021.Decision tree model for rockburst prediction based on microseismic monitoring[J].Advances in Civil Engineering,(3):1-14.

Zhou Koping Gu Desheng2004.Application of GIS-based neural network with fuzzy self-organization to assessment of rockburst tendency[J].Journal of Rock Mechanicals and Engineering23(18):3093-3097.

白明洲,王连俊,许兆义,2002.岩爆危险性预测的神经网络模型及应用研究[J].中国安全科学学报12(4):68-72.

毕傲睿,骆正山,王小完,等,2018.Vague集和熵综合赋权可拓评价模型及其工程应用[J].系统工程36(2):112-120.

陈建宏,覃曹原,邓东升,2017.基于AHP和物元TOPSIS法的层状岩体巷道冒顶风险评价[J].黄金科学技术25(1):55-60.

宫凤强,李夕兵,2007.岩爆发生和烈度分级预测的距离判别方法及应用[J].岩石力学与工程学报26(5):1012-1018.

黄玉仁,毛建喜,林朝阳,等,2014.深埋长大隧道岩爆倾向性多指标评价[J].铁道工程学报31(7):89-94.

李克钢,李明亮,秦庆词,2020.基于改进综合赋权的岩爆倾向性评价方法研究[J].岩石力学与工程学报39(1):2751-2762.

李宁,王李管,贾明涛,2017.基于粗糙集理论和支持向量机的岩爆预测[J].中南大学学报(自然科学版)48(5):1268-1275.

李鹏翔,陈炳瑞,周杨一,等,2019.硬岩岩爆预测预警研究进展[J].煤炭学报44(增2):447-465.

李任豪,顾合龙,李夕兵,等,2020.基于PSO-RBF神经网络模型的岩爆倾向性预测[J].黄金科学技术28(1):134-141.

李庶林,冯夏庭,王泳嘉,等,2001.深井硬岩岩爆倾向性评价[J].东北大学学报22(1):60-63.

李彤彤,王玺,刘焕新,等,2020.基于组合赋权的T-FME岩爆倾向性预测模型研究及应用[J].黄金科学技术28(4):565-574.

孙臣生,2019.基于改进MATLAB-BP神经网络算法的隧道岩爆预测模型[J].重庆交通大学学报(自然科学版)38(10):41-49.

汤志立,徐千军,2020.基于9种机器学习算法的岩爆预测研究[J].岩石力学与工程学报39(4):773-781.

田睿,孟海东,陈世江,等,2020.基于机器学习的3种岩爆烈度分级预测模型对比研究[J].黄金科学技术28(6):920-927.

王晋,李夕兵,杨金林,2011.深部硬岩岩爆评判的加权马氏距离判别法[J].采矿与安全工程学报28(3):395-400.

吴礼斌,李伯年,张孔生,等,2017.MATLAB数据分析方法[M].北京:机械工业出版社:111-145.

谢学斌,李德玄,孔令燕,等,2020.基于CRITIC-XGB算法的岩爆倾向等级预测模型[J].岩石力学与工程学报39(10):1975-1982.

许瑞,侯奎奎,王玺,等,2020.基于核主成分分析与SVM的岩爆烈度组合预测模型[J].黄金科学技术28(4):575-584.

衣永亮,曹平,蒲成志,2010.金川深部典型岩石岩爆倾向性多因素综合评判[J].科技导报28(2):76-80.

周科平,古德生,2004.基于GIS的岩爆倾向性模糊自组织神经网络分析模型[J].岩石力学与工程学报23(18):3093-3097.

Outlines

/

[an error occurred while processing this directive]