[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Mineral Exploration and Resource Evaluation

Discussion on the Relationships Between Planation Surface and Preservation of Porphyry Copper Deposits in the Zhongdian Region,Yunnan Province,SW China:Constraints from Geomorphic Factor Analysis

  • Jingjing ZHANG , 1, 2 ,
  • Chengbiao LENG , 1
Expand
  • 1. State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,Jiangxi,China
  • 2. College of Earth Science,East China University of Technology,Nanchang 330013,Jiangxi,China

Received date: 2020-10-10

  Revised date: 2021-04-26

  Online published: 2021-07-14

Highlights

The planation surface formation and its distribution have the characteristics of long-time span and wide distribution range, which is the basic content of geomorphology research.In order to discuss the relationship between the preservation of porphyry copper deposits after mineralization and the planation surface, based on geographic information system(GIS)platform,the paper extracted various geomorphic factors,such as the elevation,the slope and swath profile from digital elevation model(DEM)data,and then the elevation and distribution range of the planation surface were defined in the Zhongdian region.The Zhongdian region is located at the southeastern Tibetan Plateau.In this paper,DEM data from National Aeronautics and Space Administration(NASA) were used to calculate the slope value of 0°~61° in Zhongdian region by GIS technology platform,and the areas with low slope value(0°~10°)were reclassified.Meanwhile,the profile elevation of the Zhongdian region is accurately depicted by using the strip profile,and then the elevation values of the planation surface (+4 100~+4 400 m and +3 100~+3 300 m) and the topographic relief were visually displayed,indicating the distribution height of the planation surface in Zhongdian region.In this study,the thermal history of the typical porphyry(such as Xuejiping complex)was simulated,and the cooling and denudation history of the complex were reconstructed,and the cooling curve were obtained.The results show that the slope distribution in Zhongdian region was concentrated in two planation surfaces between 0° and 10°,revealing the characteristics of the high elevation and low topography.The Xuejiping complex experienced a prolonged slow cooling from the Upper Cretaceous to Late Miocene(<1 ℃/Ma),and the denudation extremely low(500~950 m),reflecting the tectonic quiet period.The process suggests that the planation surface was formed earlier than Late Cretaceous and finally in the Miocene.Combined with the former research results,the widely distributed planation surface in Zhongdian area provides favorable paleogeomorphologic conditions for the preservation of Late Triassic porphyry deposits.As the same time,the cooling history of porphyry deposits also describes the formation process of planation surface,and there is a certain coupling relationship.The existence of planation surface in Zhongdian region not only directly provides geomorphological evidence of surface uplift,but also further supports the stepwise uplift geodynamic model of the southeastern Tibetan Plateau.

Cite this article

Jingjing ZHANG , Chengbiao LENG . Discussion on the Relationships Between Planation Surface and Preservation of Porphyry Copper Deposits in the Zhongdian Region,Yunnan Province,SW China:Constraints from Geomorphic Factor Analysis[J]. Gold Science and Technology, 2021 , 29(3) : 334 -344 . DOI: 10.11872/j.issn.1005-2518.2021.03.180

[an error occurred while processing this directive]

南非矿业生产大幅回升

据Mining Weekly报道,继3月份同比增长22.5%之后,4月份南非矿业生产飙升116.5%。对增长贡献最大的为铂族金属(PGM),同比增长276%;其次是黄金,增幅为177%;锰矿石,增幅为208%;铁矿石增幅为149%。

金融服务商南非第一国民银行(FNB)认为,4月份飙升不意外,主要是因为2020年第二季度因为封锁导致底数较低。因此,5月份也可能出现2位数的同比增幅。尽管4月份增长强劲,但按照官方GDP计算方法,经过季度调整的4月份环比增幅只有0.3%,而1月份到3月份的平均月度增幅为3.2%。一季度强劲增长表现在该行业的真实GDP,经年化后的季度环比增幅为18.1%,为真实GDP增幅贡献了1.2个百分点。矿业生产持续月度增长对于第二季度GDP增长非常关键,FNB表示。该行对于矿业的短期前景保持乐观。预计矿业活动仍然得到矿产品价格上涨以及南非主要贸易伙伴经济强劲增长的支持。

莱利银行(Nedbank)赞同进行常规同比分析没有什么意义,而是重点放在讨论经季节调整后的月度环比变化以及前年的数字上。4月份0.3%的月度环比增长主要受到PGM驱动,其增幅为6.8%;锰增长5.9%,煤炭增长4.6%。但是,铜、铬和金产量较上个报告期分别下降了49.6%、10.9%和9.6%。3年平均数据显示,4月份总生产水平上升了4.9%。莱利银行称,4月份矿产品销售呈上升趋势,继3月份的17.2%后环比增幅3.2%。销售也得益于全球需求增长、商品价格强劲以及主要港口经营改善。从3年平均来看,销售额意外上升100.8%,主要受到铂族金属和铁矿石推动,其销售额分别增长334%和135%。与之对比的是,铬铁矿和锰矿石销售额下降。莱利银行称,尽管有统计基数低的因素,但在全球需求增长的推动下,4月份矿业表现良好。

展望未来,矿业发展面临不利因素。从国际上看,工业活动改善和商品价格上涨对采矿业构成支撑;但从南非国内看,用电限制和立法体系不确定带来的下行风险迫在眉睫。另外,该行提示,Covid-19疫情恶化及其带来的对经济的限制措施对复苏步伐仍是威胁。

http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-3-334.shtml

Bi Huaxing Tan Xiuying Li Xiaoyin2005.Digital terrain analysis based on DEM[J].Journal of Beijing Forestry University27(2):49-53.

Braxton D P Cooke D R Dunlap J al et2012.From crucible to graben in 2.3 Ma:A high-resolution geochronological study of porphyry life cycles,Boyongan-Bayugo copper-gold deposits,Philippines[J].Geology40(5):471-474.

Burrough P A Mcdonell R A1998.Principles of Geographical Information Systems[M].New York:Oxford University Press:17-34.

Cao K Wang G Leloup P H al et2019.Oligocene-Early Miocene topographic relief generation of southeastern Tibet Triggered by thrusting[J].Tectonics38(1):374-391.

Cheng Jie Liu Xueqing Gao Zhenji al et2001.Effect of the Tibetan Plateau uplifting on geological environment of the Yunnan Plateau[J].Geoscience15(3):290-296.

Clark M K Bush J W M Royden L H2005.Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau[J].Geophysical Journal International162(2):575-590.

Clark M K Royden L H Whipple K X al et2006.Use of a regional,relict landscape to measure vertical deformation of the eastern Tibetan Plateau[J].Journal of Geophysical Research:Earth Surface,111:1-23.

Clark M K Schoenbohm L M Royden L H al et2004.Surface uplift,tectonics,and erosion of eastern Tibet from large-scale drainage patterns[J].Tectonics23(1):1-20.

Cui Zhijiu Li Dewen Liu Gengnian al et2001.Characteristics of red karst weathering crust and formation environment of planation surface in Hunan,Guangxi,Guizhou,Yunnan and Tibet[J].Science in China (Series D)31(Supp.):134-141.

Feng Jinliang Cui Zhijiu Zhu Liping al et2005.Review of planation studies[J].Mountain Research23(1):1-13.

Haider V L Kropáček J Dunkl I al et2015.Identification of peneplains by multi-parameter assessment of digital elevation models[J].Earth Surface Processes and Landforms40(11):1477-1492.

He Haosheng1985.The characteristics of neotectonic movement in Jianchuan Basin Yunnan and the uplift of Yunnan Plateau[J].Collection of Geology of Qinghai-Tibet Plateau,17:105-117.

He Haosheng1993.The planation surface deformation and its reflection of the Quaternary tectonic movement in western Yunnan [J].Geoscience7(1):31-39.

Hetzel R Dunkl I Haider V al et2011.Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift[J].Geology39(10):983-986.

Japsen P Bonow J M Green P F al et2009.Formation,uplift and dissection of planation surfaces at passive continental margins—A new approach[J].Earth Surface Processes and Landforms34(5):683-699.

Ketcham R A2005.Forward and inverse modeling of low-temperature thermochronometry data[J].Reviews in Mineralogy and Geochemistry58(1):275-314.

Leng C B Cooke D R Hou Z Q al et2018.Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating[J].Economic Geology113(5):1077-1092.

Leng Chengbiao Zhang Xingchun Wang Xinsong al et2015.Mineralization of Indo-Chinese and Late Yanshanian porphyry in Zhongdian,Yunnan Province[J].Journal of Minerals35(Supp.1):401.

Li Dewen Cui Zhijiu2004.Karst planation surface and the Qinghai-Xizang Plateau uplift[J].Quaternary Sciences24(1):58-66.

Li Dewen Cui Zhijiu Liu Gengnian2000.Feature and origin of convered karst on Hunan,Guangxi,Guizhou,Yunnan and Tibet[J].Journal of Mountain Science18(4):289-295.

Li Jijun2013.Uplifting of the Tibet Plateau and environmental changes in the Late Cenozoic[J].Journal of Lanzhou University43(2):154-159.

Li Jijun Fang Xiaomin Pan baotian al et2001.Late cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J].Quaternary Sciences21(5):381-391.

Li Jijun Wen Shixuan Zhang Qingsong al et1979.A study on the age,amplitude and form of Qinghai-Tibet Plateau uplift[J].China Science,(6):608-616.

Li S Currie B S Rowley D B al et2015.Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau:Constraints on the tectonic evolution of the region[J].Earth and Planetary Science Letters,432:415-424.

Liu F Gao H Pan B al et2018.Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-Yunnan Region,Southwest China[J].Frontiers of Earth Science13(1):55-74.

Liu Hongguang Ma Weifeng2010.Research on planation surface judgment method based on statistical analysis of geomorphic factors—A case study of the Three Gorges Area[C]// Proceedings of 2010 International Conference on Remote Sensing (ICRS 2010).Hangzhou:Intelligent Information Technology Application Society:32-35.

Liu Yong Wang Yixiang Pan Baotian1999.A preliminary approach on the 3D presentation and quantitative analysis of planation surface[J].Georaphical Research18(4):391-399.

Liu-Zeng J Tapponnier P Gaudemer Y al et2008.Quantifying landscape differences across the Tibetan Plateau:Implications for topographic relief evolution[J].Journal of Geophysical Research,113(F4).

Liu-Zeng J Zhang J Ge Y al et2018.Tectonic geomorphology:An interdisciplinary study of the interaction among tectonic climatic and surface processes[J].Chinese Science Bulletin63(30):3070-3088.

Luo Laixing Yang Yichou1963.Discussion on Geomorphology Formation in Western Sichuan and Northern Yunnan,The Geography(No.5)[M].Beijing:The Science Press.

Ma Jinping2017.Quantitative Study Geomorphic Indices and Planation Surfaces of the Taohe Drainage System Based on DEM[D].Lanzhou:Lanzhou University.

Pan Baotian Li Jijun Li Bingyuan2000.Discussion on evidence of surface uplift of the Qinghai-Tibet Plateau[J].Journal of Lanzhou University36(3):100-111.

Reid A J Fowler A P Phillips D al et2005.Thermochronology of the Yidun Arc,central eastern Tibetan Plateau:Constraints from 40Ar/39Ar K-feldspar and apatite fission track data[J].Journal of Asian Earth Sciences25(6):915-935.

Rui Zongyao Zhang Lisheng Chen Zhenyu al et2004.Approach on source rock or source region of porphyry copper deposits[J].Acta Petrologica Sinice20(2):229-238.

Spicer R A Su T Valdes P J al et2020.Why “the uplift of the Tibetan Plateau” is a myth? [J].National Science Review8(1).

Tapponnier P Xu Z Q Roger F al et2001.Oblique stepwise rise and growth of the Tibet Plateau[J].Science294(5547):1671-1677.

Tian Y T Kohn B P Gleadow A J W al et2013.Constructing the Longmen Shan eastern Tibetan Plateau margin:Insights from low-temperature thermochronology[J].Tectonics32(3):576-592.

Tian Y T Kohn B P Gleadow A J W al et2014.A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau[J].Journal of Geophysical Research:Solid Earth119(1):676-698.

Tian Y T Kohn B P Hu S al et2015.Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau:Implications for crustal dynamics[J].Geophysical Research Letters42(1):29-35.

Wu Fuyuan Huang Baochun Ye Kai al et2007.Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau[J].Acta Petrological Sinica24(1):1-30.

Xiong Jianguo Li Youli Zhang Peizhen2020.New progress in planation surface research[J].Progress in Earth Science35(4):378-388.

Xiong L Y Tang G A Zhu A X al et2016.A peak-cluster assessment method for the identification of upland planation surfaces[J].International Journal of Geographical Information Science31(2):387-404.

Xu Shuying1963.On the formation of planation plane,age and deformation[J].Journal of Lanzhou University2(9):96-106.

Yanites B J Kesler S E2015.A climate signal in exhumation patterns revealed by porphyry copper deposits[J].Nature Geoscience8(6):462-465.

Zhang Y Z Replumaz A Wang G C al et2015.Timing and rate of exhumation along the Litang fault system,implication for fault reorganization in Southeast Tibet[J].Tectonics34(6):1219-1243.

Zhao J Qin K Li G al et2015.The exhumation history of collision-related mineralizing systems in Tibet:Insights from thermal studies of the Sharang and Yaguila deposits,central Lhasa[J].Ore Geology Reviews,65:1043-1061.

Zhong Dalai Ding Lin1996.Uplift process and mechanism of the Qinghai-Tibet Plateau[J].Science China20(4):289-295.

Zou Binwen Ma Weifeng Long Yu al et2011.Extraction method of swath profile based on ArcGIS and its application in landform analysis[J].Geography and Geo-information Science27(3):42-47.

毕华兴,谭秀英,李笑吟,2005.基于DEM的数字地形分析[J].北京林业大学学报27(2):49-53.

程捷,刘学清,高振纪,等,2001.青藏高原隆升对云南高原环境的影响[J].现代地质15(3):290-296.

崔之久,李德文,刘耕年,等,2001.湘桂黔滇藏红色岩溶风化壳的性质与夷平面的形成环境[J].中国科学(D辑)31(增):134-141.

冯金良,崔之久,朱立平,等,2005.夷平面研究评述[J].山地学报23(1):1-13.

何浩生,1985.云南剑川盆地新构造运动特征与云南高原隆起问题[J].青藏高原地质文集,17:105-117.

何浩生,1993.滇西地区夷平面变形及其反映的第四纪构造运动[J].现代地质7(1):31-39.

冷成彪,张兴春,王新松,等,2015.云南中甸地区印支期和燕山晚期斑岩成矿作用研究[J].矿物学报35(增1):401.

李德文,崔之久,2004.岩溶夷平面演化与青藏高原隆升[J].第四纪研究24(1):58-66.

李德文,崔之久,刘耕年,2000.湘桂黔滇藏一线覆盖型岩溶地貌特征与岩溶(双层)夷平面[J].山地学报18(4):289-295.

李吉均,2013.青藏高原隆升与晚新生代环境变化[J].兰州大学学报43(2):154-159.

李吉均,方小敏,潘保田,等,2001.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究21(5):381-391.

李吉均,文世宣,张青松,等,1979.青藏高原隆起的时代、幅度和形式的探讨[J].中国科学,(6):608-616.

刘洪光,马维峰,2010.基于地貌因子统计分析的夷平面判断方法的研究——以三峡地区为例[C]//国际遥感会议(ICRS).杭州:智能信息技术应用学会:32-35.

刘勇,王义祥,潘保田,1999.夷平面的三维显示与定量分析方法初探[J].地理研究18(4):391-399.

罗来兴,杨逸畴,1963.川西滇北地貌形成的探讨,地理集刊(第5号)[M].北京:科学出版社.

马金萍,2017,基于DEM的洮河流域水系地貌参数与夷平面定量化研究[D].兰州:兰州大学.

潘保田,李吉均,李炳元,2000.青藏高原地面抬升证据讨论[J].兰州大学学报36(3):100-111.

芮宗瑶,张立生,陈振宇,等,2004.斑岩铜矿的源岩或源区探讨[J].岩石学报20(2):229-238.

吴福元,黄宝春,叶凯,等,2007.青藏高原造山带的垮塌与高原隆升[J].岩石学报24(1):1-30.

熊建国,李有利,张培震,2020.夷平面研究新进展[J].地球科学进展35(4):378-388.

徐叔鹰,1963.论夷平面的成因、年龄与变形[J].兰州大学学报2(9):96-106.

钟大赉,丁林,1996.青藏高原的隆起过程及其机制探讨[J].中国科学(D辑)20(4):289-295.

邹斌文,马维峰,龙昱,等,2011.基于ArcGIS的条带剖面提取方法在地貌分析中的应用[J].地理与地理信息科学27(3):42-47.

Outlines

/

[an error occurred while processing this directive]