[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Grade Model Constructing and Reclaiming Grade Predicting of Ore Yard
Received date: 2020-07-29
Revised date: 2020-12-29
Online published: 2021-05-28
Ore yard is an indispensable part of most mines,and the precisely controll of its grade spatial distribution is the foundation of follow-up processes.The development and application of surveying technology provided technical guidance to the surveying and modeling of ore yard.Domestic and foreign scholars applied GPS RTK,3D laser scanning,GPR integration and unmanned aerial vehicle tilt photogrammetry to 3D modeling of ore yard. At the same time,grade distribution in ore body,production region and blasting muck yard was researched richly. But few scholars pay attention to grade distribution in ore yard,for the lacking of sample information to support the research of the spatial grade analysis of ore yard. The deeply application of grade on-line analyzer in mine production detection provided data sources for the modeling of ore yard’s grade model. Combined with the detecting real-time value of grade on-line analyzer,method of grade model constructing was proposed. 3D ore yard model was discretized. Ore yard was discretized as sub-segment in the length direction,and as sub-level in the cross section. Secondly,according to the spatial distance and ore flow velocity,the time gap between different locations when ore flow passed was calculated.Finally,turn the serialized data into 3D model of ore yard based on the time gap of ore flow. Then quantity and grade of each sub-segment and sub-level was analyzed. Based on 3D ore yard grade model,grade distribution was analyzed on the reclaimer’s working surface with the location and angle of claw.As the result,real-time grade was predicted. In order to verify the accuracy of ore yard grade model and reclaiming grade predicting method,grade data of MgO was contrasted between 4 shifts.Used hourly sampling test value as baseline,mean value and predictive value were contrasted. When used mean value as the reclaiming grade,the maximal hourly gap in 4 shifts is 13.87%,17.04%,15.65% and 12.54% respectively,and maximal shift average gap is 5.66%,9.41%,7.76% and 6.63% respectively. Meanwhile,when used predictive value as the reclaiming grade,the maximal hourly gap in 4 shifts is 2.93%,3.44%,3.50% and 3.16% respectively,and maximal shift average gap is 1.88%,1.98%,1.83% and 1.73% respectively. Contrastive analysis between mean value,test value and predictive value show that hourly gap is lower than 3.5%,and shift average gap is lower than 2%. The ore yard grade modeling and reclaiming grade predicting method is accurate and real-time,which improves the effect of grade control in mine.
Xin CHEN , Liguan WANG , Jinling LI . Grade Model Constructing and Reclaiming Grade Predicting of Ore Yard[J]. Gold Science and Technology, 2021 , 29(2) : 287 -295 . DOI: 10.11872/j.issn.1005-2518.2021.02.140
力拓集团将从位于美国的Kennecott矿的铜冶炼中回收关键矿物
力拓集团(Rio Tinto)将在犹他州盐湖城附近的Kennecott矿建设一座新工厂,以通过铜精炼回收碲(一种用于太阳能电池板的关键矿物)。
力拓集团将为该工厂的建设投资290万美元,从废料流中提取有价值矿物,作为铜冶炼副产品回收碲。该工厂的碲生产能力约20吨/年。力拓集团预计将在2021年12月开始生产碲,从而建立新的北美关键矿物供应链。
碲是碲化镉的重要成分,碲化镉是一种用于制造薄膜光伏太阳能电池板的半导体,用这种化合物制成的薄膜可以有效地将阳光转化为电能。碲还可以用作钢和铜的添加剂,以提高加工性能使金属更易于切割,还可以添加它来提高对硫酸、振动和疲劳的抵抗力。
力拓集团Kennecott矿的董事总经理Gaby Poirier表示,“我们生产的矿物和金属对于加速向可再生能源的过渡至关重要。将碲添加到我们的产品组合中,可为北美的客户提供安全可靠的碲来源,即利用可再生能源在最严格的环境和劳工标准下生产。力拓集团致力于利用创新来减少生产过程中的浪费,并从开采和加工的材料中获得尽可能多的价值。”
犹他州州长Spencer Cox表示,“犹他州拥有丰富的自然资源,是协助供应维持美国制造业竞争力必不可少的关键矿物的理想选择。位于Kennecott的力拓集团冶炼厂是仅有的两家能够生产铜和其他重要矿物的冶炼厂之一。新的碲生产厂是美国关键矿物独立和能源安全的又一重要贡献。”
除了生产美国近20%的铜外,Kennecott的冶炼流程还回收金、银、碳酸铅、铂、钯和硒,同时还从Copperton选厂回收钼。目前,总共有9种产品是从Kennecott提取的矿石中回收的。
力拓集团是美国能源部关键材料研究所(CMI)的合作伙伴,正与CMI的专家紧密合作,以发现进一步经济性回收碲和锂等关键矿物副产品的方法。此外,该公司正在投资建设新设施,以从加利福尼亚州的硼矿废料中提取电池级锂以及从魁北克省的Sorel-Tracy冶金厂废料中提取高品质的氧化钪。
http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-2-287.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
毕林,赵辉,贾明涛,2016.面向数据库特征的基于LMDB与线性八叉树海量块段模型存储技术[J].有色金属学报,26(9):2462-2468.
|
陈国利,2009.中加矿业公司矿石品位动态检测及质量控制系统试验研究[D].西安:西安建筑科技大学.
|
陈鑫,王李管,2016.采空区单站激光等距扫描与高效三维重建方法[J].中国矿业大学学报,45(4):836-842.
|
程明,2016.圆形料场堆取料机控制系统的设计[D].大连:大连交通大学.
|
段平,李佳,李海昆,等,2020.无人机影像点云与地面激光点云配准的三维建模方法[J].测绘工程,29(4):44-47.
|
矫品仁,2018.斗轮堆取料机自动化作业系统的研究[D].大连:大连理工大学.
|
柯丽华,何扬扬,张光权,等,2018.乌龙泉矿距离幂次反比法品位估值参数优化[J].金属矿山,47(7):147-151.
|
孔祥元,邹进贵,徐亚明,等,2003.GPS-RTK及其同地质雷达GPR集成技术用于大型企业矿料资产测算的研究[J].勘察科学技术,1:46-48.
|
李林,2019.堆料机自动控制系统设计与实现[D].大连:大连海事大学.
|
刘波,2019.数字化煤场的料堆三维重建算法研究与应用[D].北京:华北电力大学.
|
刘占宁,宋宇辰,孟海东,等,2018.块体尺寸和估值方法对矿石品位估值的影响[J].矿业研究与开发,38(6):89-93.
|
罗瑶,莫文波,颜紫科,2020.倾斜摄影测量与BIM三维建模集成技术的研究与应用[J].测绘地理信息,(4):40-45.
|
阮国强,2019.矿石码头堆取料机控制系统的研究与实现[D].唐山:华北理工大学.
|
谭金石,速云中,祖为国,2020.多旋翼无人机在露天矿区测绘中的应用[J].矿山测量,48(3):101-104,109.
|
谭期仁,董文明,毕林,等,2019.露天铀矿山爆区品位估算方法优选研究[J].黄金科学技术,27(4):573-580.
|
涂鸿渐,王李管,陈鑫,等,2019.基于混合整数规划法的露天矿配矿品位控制[J].黄金科学技术,27(3):458-465.
|
汪志明,徐亚明,汪志良,等,2003.GPS RTK技术在武钢堆料场矿料体积测量中的应用[J].测绘信息与工程,28(1):13-14.
|
王李管,宋华强,毕林,等,2017.基于目标规划的露天矿多元素配矿优化[J].东北大学学报(自然科学版),38(7):1031-1036.
|
张博文,苏志祁,杨柳斌,等,2020.基于单目多视图三维重建方法的料堆体积测算[J].烧结球团,45(3):44-48.
|
周洪军,陈树军,林洪征,等,2015.X荧光在线品位分析仪在鹿鸣选矿厂中的应用[J].有色冶金设计与研究,36(3):45-47.
|
周坤,张伟明,朱秋飞,2020.智能化矿山基础建设—荧光分析仪在线检测[J].铜业工程,(1):99-100,104.
|
周晓卫,杜琨,谭奇峰,等,2020.三维激光扫描仪在不规则实体表面积计算中的应用[J].矿山测量,48(3):17-19,32.
|
/
〈 |
|
〉 |