Ore-forming Fluid Characteristics and Material Source of Gold Deposits in Tongdao County,Hunan Province:Evidence from Fluid Inclusions and H-O-S Isotopes
Received date: 2020-07-29
Revised date: 2020-11-29
Online published: 2021-03-22
A large number of medium-large gold deposits developed in the Xuefeng arc-shaped structural belt,which mainly composed of precambrian strata and undergo low-grade metamorphism with multi-stage tectonic movement.In addition,long-term large-scale magma activity (e.g. Silurian,Triassic) occurred in the Taojiang-Chengbu fault zone on the eastern margin of Xuefeng Mountain.Due to the overprint of regional metamorphic hydrothermal and deep magma hydrothermal fluid,both metamorphic hydrothermal and magmatic hydrothermal Au-Sb deposits are occurred in Xuefeng Mountain region.Previous research and exploration mainly focused on gold deposits in the northern and middle district of the metallogenic belt,that is lacking in the southern district (e.g. Huitong,Jingzhou,Tongdao).The gold deposits in the Tongdao County are composed of the Chaxi,Jinkeng,and Huanggou small-medium quartz vein and altered rock type gold deposits,which developed in low-grade precambrian metamorphic strata and controlled by faults.To constrain the ore forming fluids characteristics and source,field investigations,microscopic rock-mineral determination,fluid inclusion and H-O-S isotope analysis were completed in this research.The representative ore-bearing quartz vein samples were selected to identify the petrographic characteristics of inclusions for micro-thermal analysis.In addition,the H,O isotope composition were analyzed with a single mineral of quartz and the in-situ S isotope analysis of gold-bearing sulfides (e.g. pyrite and arsenopyrite) are obtained by LA-ICP-MS.Analysis results show that it can be divided into two metallogenic stages,stage Ⅰ is quartz+pyrite+arsenopyrite+sericite+gold,stage Ⅱ is quartz+sericite+minor gold.The homogenization temperature of stage Ⅰ quartz fluid inclusions in the Chaxi deposit is 155~297 ℃ with a peak value of 210~220 ℃ and the salinity[w(NaCl)] is 4.9%~11.7%.The homogenization temperature of stage Ⅱ quartz fluid inclusions in the Chaxi deposit is 135~233 ℃ with a peak value of 160~170 ℃ and the salinity is 3.3%~9.7%.The homogenization temperature of quartz fluid inclusions in the Jinkeng deposit is 202~261 ℃ with a peak value of 210~220 ℃ and the salinity is 5.6%~10.1%.The homogenization temperature of stage Ⅱ quartz fluid inclusions in the Jinkeng deposit is 134~203 ℃ with a peak value of 150~160 ℃ and the salinity is 3.8%~8.8%.The homogenization temperature of stage Ⅰ quartz fluid inclusions in the Huanggou deposit is 176~319 ℃ with a peak value of 220~240 ℃ and the salinity is 5.1%~11.7%.The H-O isotopic composition of the ore-forming fluids in the three deposits has a similar evolution trend:The stage Ⅰ δ 18Ofluid change from +4.95‰ to +6.95‰ and the stage Ⅱ δ 18Ofluid change from +1.08‰ to +1.38‰,while the δD value changes greatly,from -83‰ to -33‰.Therefore,the stage Ⅰ ore-forming fluid is a medium-temperature and medium-low-salinity fluid,the source of which are dominated by metamorphic water with overprint of deep magma water and the stage Ⅱ ore-forming fluid is a low-temperature and low-salinity fluid,indicating an addition of meteoric water.In addition,the δ 34S values of pyrite in the Huanggou deposit is scattered,ranging from -15.79‰ to +3.88‰,while the δ 34S values of sulfide in the Jinkeng deposit is concentrated,which is -5.02‰~+0.74‰.Combined with the sulfur isotope composition of regional strata and the EPMA analysis of pyrite,it is believed that the sulfur source of gold-bearing sulfide (δ 34S value near zero) is mainly originated from deep magmatic,but no gold or with trace gold content sulfide (negative δ 34S value) are derived from wall rock formation.
Yuhua XIE , Hua GAO , Zhe ZHANG , Liang YANG , Xinxing KE , Xiaomin LIU , Jianbiao LUO , Qi LIU , Kunlin XU , Jishun LIU , Zhilin WANG , Hua KONG , Biao LIU . Ore-forming Fluid Characteristics and Material Source of Gold Deposits in Tongdao County,Hunan Province:Evidence from Fluid Inclusions and H-O-S Isotopes[J]. Gold Science and Technology, 2021 , 29(1) : 74 -89 . DOI: 10.11872/j.issn.1005-2518.2021.01.138
2020年我国黄金产量365.34 t,黄金消费量820.98 t,同比分别下降3.91%和18.13%
中国黄金协会最新统计数据显示,2020年,国内原料黄金产量为365.34 t,与2019年同期相比减产14.88 t,同比下降3.91%。其中,黄金矿产金完成301.69 t,有色副产金完成63.65 t。
2020年一季度,受新冠肺炎疫情影响,国内黄金产量同比大幅下降10.93%,湖北省基本停产,山东、河南等重点产金省也受到较大冲击。随着国内疫情逐渐得到有效控制以及黄金价格的波动上升,黄金行业生产经营情况逐步好转,自二季度以来,黄金产量环比逐步提高,四季度环比增长达10.29%。重点黄金企业(集团)在抓好常态化疫情防控措施的同时,继续优化产业布局、转换增长动力、推进绿色矿山建设、加快“走出去”步伐,中国黄金、山东黄金、紫金矿业、山东招金等大型黄金企业(集团)实现矿产金产量147.26 t,占全国的比重达48.81%,与2019年同期持平(增长0.04%),黄金企业“向高质量发展转变”初显成效。
受新冠肺炎疫情在全球蔓延影响,进口黄金原料供应趋紧。2020年进口原料产金114.16 t,同比下降5.02%,若加上这部分进口原料产金,全国共生产黄金479.50 t,同比下降4.18%。
2020年,全国黄金实际消费量820.98 t,与2019年同期相比下降18.13%。其中:黄金首饰490.58 t,同比下降27.45%;金条及金币246.59 t,同比增长9.21%;工业及其他用金83.81 t,同比下降16.81%。年初新冠肺炎疫情爆发,全国迅速采取严格的防控措施,黄金首饰、金条等生产加工和零售均受到较大影响,一季度黄金消费量同比下降48.20%,随着国内疫情防控态势好转和经济持续稳定恢复,黄金消费量稳步回升。特别是部分黄金零售企业在线上打开新市场,销售成绩亮眼,但由于线上销售基数较低,仍旧无法弥补店铺销量的下滑。金价的巨幅波动和宽松的货币政策引发了民间投资者对黄金的关注,尤其下半年金条及金币消费量较上一年同期增长50.91%,进而扭转了全年金条及金币消费趋势。
2020年,在新冠肺炎疫情蔓延、全球经济形势恶化及各国货币政策进一步宽松的情形下,黄金价格整体呈上涨并保持巨幅震荡之势。年末伦敦现货黄金定盘价为1 891.10美元/盎司,较上年末上涨24.17%。上海黄金交易所Au9999黄金以341.95元/克开盘,年末收于390.00元/克,较上年末上涨14.44%,全年加权平均价格为388.13元/克,同比增长25.73%。受汇率变化的影响,国际金价和国内金价变化趋势有所差异,但均于第三季度刷新了历史新高。
2020年,上海黄金交易所全部黄金品种累计成交量双边5.87万吨(单边2.93万吨),同比下降14.44%,成交额双边22.55万亿元(单边11.28万亿元),同比增长4.91%;上海期货交易所全部黄金品种累计成交量双边10.95万吨(单边5.48万吨),同比增长18.39%,成交额双边41.47万亿元(单边20.73万亿元),同比增长38.26%。2020年,国内黄金ETF基金由4支增加至11支,年末持仓量约60.9 t,较上年末增持16.1 t,增长约36%。
(来源:中国黄金协会)
http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-1-74.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
鲍振襄,万容江,鲍珏敏,1999.湘西钨锑金矿床成矿系列及其稳定同位素研究[J].北京地质,(1):11-17.
|
陈柏林,2002.论中国金矿床成矿时代特点[J].地质地球化学,30(2):66-73.
|
何谷先,1989.湘西雪峰山地区金矿床地质特征及其分布规律[J].黄金,10(5):2-6.
|
贾宝华,1994.湖南雪峰隆起区构造变形研究[J].中国区域地质,(1):65-71.
|
刘继顺,1996.韧性剪切带中金成矿研究的若干问题[J].地质论评,42(2):123-128.
|
刘清泉,2018.湘东北地区正冲金矿床地质地球化学特征与矿床成因[R].长沙:中南大学.
|
刘晓敏,杨亮,2017.湖南省通道地区金、铜多金属矿成矿条件分析及找矿前景研究[J].世界有色金属,(10):16-17.
|
罗献林,1990.论湖南前寒武系金矿床的成矿物质来源[J].桂林冶金地质学院学报,10(1):13-26.
|
罗献林,1991.湖南金矿床的成矿特征与成因类型[J].桂林冶金地质学院学报,11(1):23-33.
|
骆学全,1996.湖南铲子坪金矿的成矿规律及找矿标志[J].湖南地质,15(1):33-38.
|
马小双,2016.湘西雪峰中段金锑矿床流体包裹体及同位素特征研究[D].湘潭:湖南科技大学.
|
毛景文,李红艳,1997.江南古陆某些金矿床成因讨论[J].地球化学,26(5):71-81.
|
彭渤,
|
彭渤,陈广浩,
|
彭渤,刘升友,
|
彭建堂,戴塔根,1998.雪峰地区金矿成矿时代问题的探讨[J].地质与勘探,34(4):39-43.
|
彭建堂,胡阿香,肖静芸,等,2017.湖南变质岩地体中两类金矿的成矿作用研究[C]// 第八届全国成矿理论与找矿方法学术讨论会论文摘要文集. 北京:中国矿物岩石地球化学学会矿床地球化学专业委员会,中国地质学会矿床地质专业委员会,矿床地球化学国家重点实验室:146.
|
彭南海,2017.湖南沅陵沃溪金—锑—钨矿床地质地球化学特征及成因研究[D].长沙:中南大学.
|
苏康明,曾勇,2007.雪峰弧形构造带金矿类型及分布特征[J].黄金,28(4):19-23.
|
王成辉,徐珏,黄凡,等,2014.中国金矿资源特征及成矿规律概要[J]地质学报,88(12):2315-2325.
|
魏道芳,1993.铲子坪金矿成矿物质来源及成矿机理的地球化学研究[J].湖南地质,12(1):29-34.
|
伍式崇,2014.茶溪详查报告[R]. 株洲:湖南地勘局四一六队.
|
熊建忠,2017.黄垢野外总结[R].长沙:湖南核工业地质局三〇一大队.
|
杨冲,2012.雪峰弧形构造带金(锑)控矿构造分析及找矿方向研究[D].湘潭:湖南科技大学.
|
易升星,2012.湖南省沃溪金锑钨矿床地质特征、流体包裹体特征及矿床成因研究[D].长沙:中南大学.
|
张景荣,罗献林,1989.论华南地区内生金矿床的形成时代[J].桂林冶金地质学院学报,9(4):369-379.
|
/
〈 |
|
〉 |