img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

Optimization of Roadway Support Parameters in Soft Broken Sections Based on Orthogonal Test

  • Jianhua HU ,
  • Le PANG ,
  • Xueliang WANG ,
  • Minghua ZHENG
Expand
  • 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Hubei Sanning Mining Co. ,Ltd. ,Yichang 443100,Hubei,China

Received date: 2020-02-28

  Revised date: 2020-06-07

  Online published: 2021-01-29

Abstract

Mineral resources are the foundation of social development.Projects such as efficient and safe tunneling and opening roadways are one of the main tasks of underground mines.Due to the differences in the geological conditions of the underground rock layers and the non-selective engineering environment,the roadway support in the soft broken section of the fault has an important impact on the construction and operation safety of the mine roadway.Taking the tunnel development project of the soft-segmented section of F4 fault in Tiaoshuihe Phosphate Mine as an object,we studies how to improve the engineering stability of the roadway by reasonable support design under the influence of F4 fault,the roof structure is poor,and the floor and surrounding rock are relatively soft.Finite difference software FLAC3D was used to construct a three-dimensional numerical simulation model of the mine roadway.A Mohr-Coulomb model was used in this study.The model size is 40 m × 40 m × 40 m,the fault thickness is 8 m,the inclination angle is 75°,and the burial depth is 250 m.The side and bottom of the model are fixed boundaries,and the upper surface is not constrained.The side pressure coefficient is λ=1.2 with reference to Yichang area.The optimization of the support parameters involves three factors:The length of the anchor rod,the thickness of the shotcrete and the thickness of the masonry.Based on the investigation of its engineering geological conditions,an orthogonal experiment scheme of 3 factors (including 1 factor of 4 levels and 2 factors of 2 levels) of support parameters was designed.Based on the analysis of the support effect and deformation law of different parameter combinations,the length of the anchor rod,the thickness of the shotcrete and the thickness of the masonry were reasonably selected under the economic conditions,which provides theoretical basis for the final support mode and parameter optimization.The supporting method and parameters of the roadway were determined by range analysis.The research results show that:(1)The orthogonal experiment design can effectively reduce the number of experiments and improve the calculation effect.The analysis of variance of the calculation results identified the influencing factors of different results.The main factors affecting the displacement of the top and bottom plates,vertical stress,and sideways displacement of the roadway are the length of the anchor rod,the thickness of the concrete,and the thickness of the masonry.Reasonably selecting the size of support parameters is conducive to improving the effect of support.(2)Taking the displacement and stress of the roadway in the soft fault section as the research object,the optimal supporting scheme is determined as bolt length of 2.8 m,shotcrete thickness of 100 mm and arch thickness of 250 mm.The numerical simulation further verifies that the supporting effect under this parameter is conducive to improving the engineering stability of the soft fault section.(3)This study provides technical reference for the excavation and support of roadway of phosphorite and metal deposits with similar geological conditions,and has good demonstration and guidance significance.

Cite this article

Jianhua HU , Le PANG , Xueliang WANG , Minghua ZHENG . Optimization of Roadway Support Parameters in Soft Broken Sections Based on Orthogonal Test[J]. Gold Science and Technology, 2020 , 28(6) : 859 -867 . DOI: 10.11872/j.issn.1005-2518.2020.06.047

References

1 Kang H,Zhang X,Si L,et al.In-situ stress measurements and stress distribution characteristics in underground coal mines in China[J].Engineering Geology,2010,116(3/4):333-345.
2 De Bellis M L,Della Vecchia G,Ortiz M,et al.A linearized porous brittle damage material model with distributed frictional-cohesive faults[J].Engineering Geology,2016,215:10-24.
3 Niwa M,Shimada K,Aoki K,et al.Microscopic features of quartz and clay particles from fault gouges and infilled fractures in granite:Discriminating between active and inactive faulting[J].Engineering Geology,2016,210:180-196.
4 王玉和,李春朋,崔增斌.含软弱夹层对巷道围岩承载结构的影响分析[J].科学技术与工程,2019,19(36):111-116.
4 Wang Yuhe,Li Chunpeng,Cui Zengbin,et al.Analyses on the influence of soft interlayer on the bearing structure of roadway surrounding rock[J].Science Technology and Engineering,2019,19(36):111-116.
5 苏锡安.西石门铁矿北区软弱破碎围岩巷道掘支技术[J].中国矿业,2019,28(11):109-112.
5 Su Xi’an.Excavation and support technology of soft and fractured surrounding rock roadway in north area of Xishimen iron mine[J].China Mining Magazine,2019,28(11):109-112.
6 孙健新.软弱煤岩复合顶板巷道破坏机理与支护技术[J].煤矿安全,2019,50(9):96-100.
6 Sun Jianxin.Failure mechanism and supporting technology of roadway with weak coal and rock composite roof[J].Safety in Coal Mines,2019,50(9):96-100.
7 王松柏.泥化软岩巷道全断面锚注加固技术研究[J].能源与环保,2019,41(1):125-129.
7 Wang Songbai.Research on grouting anchorage for full section in soft and mudding roadway[J].China Energy and Environmental Protection,2019,41(1):125-129.
8 Zhao K,Bonini M,Debernardi D,et al.Computational modelling of the mechanised excavation of deep tunnels in weak rock[J].Computers and Geotechnics,2015,66:158-171.
9 李光,马凤山,刘港,等.金川矿区深部巷道支护效果评价及参数优化研究[J].黄金科学技术,2018,26(5):605-614.
9 Li Guang,Ma Fengshan,Liu Gang,et al.Study on supporting parametric optimizing design and evaluate supporting effect of deep roadway in Jinchuan Mine[J].Gold Science and Technology,2018,26(5):605-614.
10 Wang L G,Li H L,Zhang J.Numerical simulation of creep characteristics of soft roadway with bolt-grouting support[J].Journal of Central South University of Technology,2010,15(1):391-396.
11 丁昌伟,吴德义.典型地质条件深部岩巷锚杆长度的选择[J].山西建筑,2020,46(3):67-69.
11 Ding Changwei,Wu Deyi.Selection of bolt length in deep rock roadway under typical geological conditions[J].Shanxi Architecture,2020,46(3):67-69.
12 朱家锐,毛明发,常伟华,等.基于正交试验对深部巷道锚喷网支护参数的设计与优化[J].煤炭技术,2017,36(12):22-24.
12 Zhu Jiarui,Mao Mingfa,Chang Weihua,et al.Designand optimization of shotcrete rockbolt mesh supporting parameters for deep roadway based on orthogonal test [J].Coal Technology,2017,36(12):22-24.
13 刘希亮,王蒙蒙,王新宇,等.基于正交试验的深部岩巷稳定性数值分析[J].煤炭科学技术,2018,46(2):138-143,181.
13 Liu Xiliang,Wang Mengmeng,Wang Xinyu,et al.Numerical analysis on stability of deep rock roadway based on orthogonal test[J].Coal Science and Technology,2018,46(2):138-143,181.
14 Yang Z,Dai F,Muhammad Usman A,et al.The long- term safety of a deeply buried soft rock tunnel lining under inside-to-outside seepage conditions[J].Tunnelling and Underground Space Technology,2017,67:132-146.
15 胡建华,任启帆,亓中华,等.卧虎山铁矿采场极限暴露面积回归优化模型[J].黄金科学技术,2018,26(4):503-510.
15 Hu Jianhua,Ren Qifan,Qi Zhonghua,et al.Regress optimize model of limit exposure area to stope in Wohushan iron mine[J].Gold Science and Technology,2018,26(4):503-510.
16 王春,王成,熊祖强,等.动力扰动下深部出矿巷道围岩的变形特征[J].黄金科学技术,2019,27(2):232-240.
16 Wang Chun,Wang Cheng,Xiong Zuqiang,et al.Deformation characteristics of the surrounding rock in deep mining roadway under dynamic disturbance[J].Gold Science and Technology,2019,27(2):232-240.
17 万军伟.巷道支护参数设计研究[J].能源与环保,2019,41(10):162-165.
17 Wan Junwei.Research on design of roadway support parameters [J].China Energy and Environmental Protection,2019,41(10):162-165.
18 周国军,贺严.基于Flac3D数值模拟的软弱岩体联合支护机理研究[J].有色矿冶,2019,35(5):6-10.
18 Zhou Guojun,He Yan.Research on combined supporting mechanism of fractured rock mass based on Flac3D numerical simulation[J].Non-ferrous Mining and Metallurgy,2019,35(5):6-10.
19 黄鑫,姚韦靖.多因素影响下巷道变形特性数值模拟研究[J].中国安全生产科学技术,2019,15(4):32-38.
19 Huang Xin,Yao Weijing.Numerical simulation study on deformation characteristics of roadway under multi-factor influence[J].Journal of Safety Science and Technology,2019,15(4):32-38.
20 杨明财,盛建龙,叶祖洋,等.基于FlAC3D的露天矿边坡稳定性及影响因素敏感性分析[J].黄金科学技术,2018,26(2):179-186.
20 Yang Mingcai,Sheng Jianlong,Ye Zuyang,et al.Analysis of sensitivity factors of open-pit mine slope stability and impact based on FlAC3D[J].Gold Science and Technology,2018,26(2):179-186.
21 龙科明,王李管.基于ANSYS-R法的采场结构参数优化[J].黄金科学技术,2015,23(6):81-86.
21 Long Keming,Wang Liguan.Optimization of stope structural parameters based on ANSYS-R method[J].Gold Science and Technology,2015,23(6):81-86.
Outlines

/