Numerical Calculation Method of Fault Flow-Thermal Coupling Based on Cubic Law
Received date: 2020-07-09
Revised date: 2020-08-03
Online published: 2021-01-29
For the ore-forming process of hydrothermal deposits,the seepage of fluids in the rock matrix and fissures (faults) produces material and energy transmission,and forms orebodies at specific locations with changes in temperature and pressure.Because the width of the fault is much smaller than the dimension of its extension direction,it causes problems such as difficulty in modeling numerical models and low calculation efficiency.According to the geometric characteristics of the fault,it can be generalized into a space surface to reduce the difficulty of modeling.The generalized fault uses the cubic law in rock mass fracture seepage theory to calculate the fault seepage problem.The seepage of hydrothermal fluid is not limited to faults,but also occurs in bedrock,and this process is calculated using Darcy’s law. The fracture flow in the fault and the Darcy flow in the bedrock interact with each other.In order to ensure the continuity of the pressure,velocity,mass,and energy of the seepage field in the numerical model calculation domain,the flow-heat coupling calculation is required.The purpose of this study is to verify the feasibility and rationality of the generalization method of the fault space surface,and to solve the problem of flow-heat coupling between the fissure flow in the fault and the Darcy flow in the bedrock.The viscosity of fluid has the property of changing with temperature.This article will discuss whether the change of viscosity has an effect on the calculation result of the numerical model initially.Based on the theoretical formula of cubic law,the formula is derived according to the characteristics of small fault thickness,and the flow-heat coupling control equation of fracture flow and Darcy flow is obtained. In order to verify the rationality of the control equations,numerical model experiments are used for verification and analysis.After analysis,it is considered that the method of calculating the seepage of the fault using cubic law is feasible when the internal structure of the fault is not taken into consideration,which can reduce the difficulty of modeling the numerical model.Because the fault uses a spatial surface,the reduction of the dimension compared to the overall model also brings increased computing efficiency. After analyzing the results of the numerical experiments,it is considered that the coupling control equation is reasonable and effective for the calculation of the flow-heat coupling between the bedrock and the fault,which is in accordance with the laws of seepage and heat conduction.Based on the original experimental numerical model,a model in which the viscosity coefficient of the fluid does not change with temperature is established,and the change curves of mass and heat conduction flux are compared.It is found whether the change of the fluid viscosity is considered to have a significant effect on the calculation result of the numerical model.
Gang CHEN , Ling MA , Hongsheng GONG . Numerical Calculation Method of Fault Flow-Thermal Coupling Based on Cubic Law[J]. Gold Science and Technology, 2020 , 28(6) : 846 -858 . DOI: 10.11872/j.issn.1005-2518.2020.06.122
中国地质调查局形成一批海洋地质创新成果
据2021年1月11日报道,为支持海南省建设,在系统调查与综合研究的基础上,自然资源部中国地质调查局形成了一批海洋地质创新成果,共编制完成相关地质图集2套,新发现大型海砂矿区1处,评价优选南海油气资源矿权区3块。其中,图集为首次系统开展海南海岸带资源与环境调查的研究成果,已提交海南省用于海岸带保护与利用综合规划编制,为海岸带产业规划、生态环境保护和地质灾害防治等提供科学依据。
2018年,中国地质调查局与海南省政府签署加强海南地质调查工作战略合作协议。2019年,双方合作共建南海地质科技创新基地,以广州海洋地质调查局为主体,武汉地调中心等多家单位参与,围绕天然气水合物勘查开发先导试验区建设、南海油气和基础地质调查、南海岛礁综合地调、海岸带综合地调、海南国家生态文明试验区综合地调与资源环境承载能力评价、重大科研基础设施和条件平台建设、数据集成与成果转化应用等7个方面部署开展地质工作,形成了一批海洋地质科技创新成果。
一是编制完成《海南海岸带资源环境图集》和《支撑服务海南海岸带社会经济发展资源环境调查报告》。中国地质调查局精准对接海南需求,组织广州海洋地质调查局实施海南海岸带综合地调,开展“重点生态区”生态地调、“重点规划区”综合地调以及重要资源专项调查,并系统总结已完成的海南岛1∶10万、1∶5万水工环地调成果,编制完成海岸带自然资源、生态环境、海岸带资源环境承载能力和国土空间开发适宜性 “双评价”等系列图件27幅,全面展示了海岸带地质资源禀赋、生态环境现状、致灾因素等,系统梳理了资源优势和地质环境问题,为海岸带空间规划提供了直接依据。
二是开展矿产资源勘查评价,新发现大型海砂矿区1处。共组织实施3个调查航次,调查面积520 km2,完成综合物探调查867 km,钻孔60口总进尺1 896 m,并完成上千件样品测试分析,在海南东方—乐东近海海域新发现大型海砂矿区1处,查明控制资源量9 250×104 m3,及时服务海南经济社会发展对海砂资源的迫切需求。
三是开展南海油气勘查开发矿权区块优选,提交优选区3块。为助推国家海域油气勘查开发体制改革,中国地质调查局组织广州海洋地质调查局从油气勘探开发现状、区域地质背景、地质条件、资源规模等方面,对南海油气勘探空白区及油气公司近期退出的勘查区进行区域油气勘探潜力综合评价,在近10×104 km2区域内,首批评价优选出南海北部3个具有较好潜力的油气矿权出让区块,面积约1×104 km2,助推油气矿权区出让体制改革。
下一步,中国地质调查局将进一步围绕海南经济社会发展需求和自贸港建设需要,开展海岛淡水资源、海洋牧场调查等工作。
(来源:中国自然资源报)
http://www.goldsci.ac.cn/article/2020/1005-2518/1005-2518-2020-28-6-846.shtml
1 |
|
2 |
赵义来,刘明亮.复杂形态岩体接触带成矿耦合动力学三维数值模拟:以安庆铜矿为例[J].大地构造与成矿学,2011,35(1):128-136.
|
3 |
朱静,陈建平.基于FLAC3D的成矿过程模拟研究现状[J].地质学刊,2019,43(3):506-512.
|
4 |
刘向冲.构造—流体耦合有限元模拟:以石英脉型钨矿为例[J].地质力学学报,2019,25(5):163-169.
|
5 |
戴文强,李晓晖,袁峰,等.安庆铜矿床典型矽卡岩矿物形成过程数值模拟[J].合肥工业大学学报(自然科学版),2019,42(3):346-354.
|
6 |
赵崇斌,
|
7 |
池国翔,薛春纪.成矿流体动力学的原理、研究方法及应用[J].地学前缘,2011,18(9):1-18.
|
8 |
|
9 |
李瑞红,安平,恽孟河,等.焦家断裂带三维结构模型及其数值模拟:以新城金矿床控矿构造为例[J].大地构造与成矿学,2019,43(2):33-45.
|
10 |
杨永春,刘家军,王学银,等.甘肃滴水山金矿不同构造—岩相带岩石地球化学特征及构造控矿机理探讨[J].西北地质,2018,51(1):88-103.
|
11 |
赵少攀,徐书奎,徐宗蛟,等.河南洛宁县龙门店银矿区断裂构造分期及含矿性评价[J].西北地质,2019,52(1):228-238.
|
12 |
刘春学,倪春中,吕磊,等.地学中方向性变量的多尺度空间分布模拟[M]. 北京:科学出版社,2017.
|
13 |
|
14 |
张有天.岩石水力学与工程[M]. 北京:中国水利水电出版社,2004.
|
15 |
陈必光,宋二祥,程晓辉.二维裂隙岩体渗流传热的离散裂隙网络模型数值计算方法[J].岩石力学与工程学报,2014,33(1):43-51.
|
16 |
|
17 |
|
18 |
|
19 |
赵坚.岩石裂隙中的水流—岩石热传导[J].岩石力学与工程学报,1999,18(2):119-123.
|
20 |
赵阳升,王瑞凤,胡耀青,等.高温岩体地热开发的块裂介质固流热耦合三维数值模拟[J].岩石力学与工程学报,2002,21(12):1751-1755.
|
21 |
张树光,李志建,徐义洪,等.裂隙岩体流—热耦合传热的三维数值模拟分析[J].岩土力学,2011,32(8):2507-2511.
|
22 |
唐志伟,米倡华,张学峰,等.增强型地热系统固流耦合数值模拟与分析[J].北京工业大学学报,2016,42(10):1560-1564.
|
23 |
曲占庆,张伟,郭天魁,等.基于 COMSOL 的储层参数与层理缝对地热产能影响规律研究[J].地球物理学进展,2017,32(6):2374-2382.
|
24 |
张伟,孙江,曲占庆,等.高温地热开采热流固耦合模型及综合评价方法[J].地球物理学进展,2019,34(2):668-675.
|
25 |
|
26 |
|
27 |
仵彦卿.岩土水力学[M]. 北京:科学出版社,2009.
|
28 |
速宝玉,张文捷,盛金昌,等.渗流—化学溶解耦合作用下岩石单裂隙渗透特性研究[J] .岩土力学,2010,31(11):3361-3366.
|
29 |
王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,2002,13(1):61-68.
|
30 |
|
31 |
刘明亮,周瑞超,赵崇斌.构造应力环境对浅成岩体成矿系统的制约:从安庆月山岩体冷却过程动力学计算模拟结果分析[J].岩石学报,2010,26(9):2869-2878.
|
/
〈 |
|
〉 |