Combined Prediction Model of Rockburst Intensity Based on Kernel Principal Component Analysis and SVM
Received date: 2019-12-25
Revised date: 2020-04-22
Online published: 2020-08-27
Rockburst is a relatively dangerous engineering geological disaster in underground hard rock engineering constructed in high geostress area.Due to the re-distribution of the stress in surrounding rocks during the excavation of underground engineering,the elastic strain energy is released suddenly and abruptly,causing rock fragments to eject from the rock.And then,the casualties and equipment damage are often happened,which make the rockburst become one of the worldwide difficulties in underground engineering.Therefore,the prediction of possibility of rockburst and its intensity is a problem that must be solved in underground engineering construction.For predicting rock-burst intensity effectively,a combined prediction model based on kernel principal component analysis (KPCA) of multiple types and the support vector machine (SVM) optimized by genetic algorithm or particle swarm optimization algorithm (GA/PSO) was established.According to the characteristics and causes of rockburst,rocks’ maximum tangential stress
Rui XU , Kuikui HOU , Xi WANG , Xingquan LIU , Xibing LI . Combined Prediction Model of Rockburst Intensity Based on Kernel Principal Component Analysis and SVM[J]. Gold Science and Technology, 2020 , 28(4) : 575 -584 . DOI: 10.11872/j.issn.1005-2518.2020.04.019
1 | 李夕兵.岩石动力学基础与应用[M].北京:科学出版社,2014. |
1 | Li Xibing.Rock Dynamics Fundamentals and Applications[M].Beijing:Science Press,2014. |
2 | 王元汉,李卧东,李启光,等.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报,1998,17(5):493-501. |
2 | Wang Yuanhan,Li Wodong,Li Qiguang,et al.Method of fuzzy comprehensive evaluations for rockburst prediction[J].Chinese Journal of Rock Mechanics and Engineering,1998,17(5):493-501. |
3 | 李夕兵,宫凤强,王少锋,等.深部硬岩矿山岩爆的动静组合加载力学机制与动力判据[J].岩石力学与工程学报,2019,38(4):708-723. |
3 | Li Xibing,Gong Fengqiang,Wang Shaofeng,et al.Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rockburst in deep hard rock mines[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(4):708-723. |
4 | 宫凤强,李夕兵.岩爆发生和烈度分级预测的距离判别方法及应用[J].岩石力学与工程学报,2007,26(5):1012-1018. |
4 | Gong Fengqiang,Li Xibing.A distance discriminant analysis method for prediction of possibility and classification of rockburst and its application[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(5):1012-1018. |
5 | 赵洪波.岩爆分类的支持向量机方法[J].岩土力学,2005,26(4):642-644. |
5 | Zhao Hongbo.Classification of rockburst using support vector machine[J].Rock and Soil Mechanics,2005,26(4):642-644. |
6 | 白明洲,王连俊,许兆义.岩爆危险性预测的神经网络模型及应用研究[J].中国安全科学学报,2002,12(4):65-69. |
6 | Bai Mingzhou,Wang Lianjun,Xu Zhaoyi.Study on a neutral network model and its application in predicting the risk of rock blast[J].China Safety Science Journal,2002,12(4):65-69. |
7 | 高玮.基于蚁群聚类算法的岩爆预测研究[J].岩土工程学报,2010,32(6):874-880. |
7 | Gao Wei.Prediction of rock burst based on ant colony clustering algorithm[J].Chinese Journal of Geotechnical Engineering,2010,32(6):874-880. |
8 | Zhou J,Li X B,Shi X Z.Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines[J].Safety Science,2012,50(4):629-644. |
9 | 邱道宏,李术才,张乐文,等.基于模型可靠性检查的QGA-SVM岩爆倾向性分类研究[J].应用基础与工程科学学报,2015,23(5):981-991. |
9 | Qiu Daohong,Li Shucai,Zhang Lewen,et al.Research on QGA-SVM rock burst orientation classification based on model reliability examination[J].Journal of Basic Science and Engineering,2015,23(5):981-991. |
10 | 贾义鹏,吕庆,尚岳全.基于粒子群算法和广义回归神经网络的岩爆预测[J].岩石力学与工程学报,2013,32(2):344-348. |
10 | Jia Yipeng,Qing Lü,Shang Yuequan.Rockburst prediction using particle swarm optimization algorithm and general regression neural network[J].China Journal of Rock Mechanics and Engineering,2013,32( 2):343-348. |
11 | Liu S,Dou L M,Si G Y,et al.A principal component analysis/fuzzy comprehensive evaluation model for coal burst liability assessment[J].International Journal of Rock Mechanics and Mining Sciences,2016,81(5):62-69. |
12 | 吴顺川,张晨曦,成子桥.基于PCA-PNN原理的岩爆烈度分级预测方法[J].煤炭学报,2019,44(9):2767-2776. |
12 | Wu Shunchuan,Zhang Chenxi,Cheng Ziqiao. Prediction of intensity classification of rockburst based on PCA-PNN principle[J].Journal of China Coal Society,2019,44(9):2767-2776. |
13 | Zhou J,Li X B,Hani S M.Classification of rockburst in underground projects comparison of ten supervised learning methods[J].Journal of Computing in Civil Engineering,2016,30(5):1-19. |
14 | 赵国彦,刘雷磊,王剑波,等.岩爆等级预测的PCA-OPF模型[J].矿冶工程,2019,39(4):1-5. |
14 | Zhao Guoyan,Liu Leilei,Wang Jianbo,et al.PCA-OPF model for rock burst prediction[J].Mining and Metallurgical Engineering,2019,39(4):1-5. |
15 | 辛焕平.MATLAB R2017a模式识别与智能计算[M].北京:电子工业出版社,2018. |
15 | Xin Huanping.MATLAB R2017a Pattern Recognition and Intelligent Computing[M].Beijing:Publishing House of Electronics Industry,2018. |
16 | Sun H T,Lü G D,Mo J Q,et al.Application of KPCA combined with SVM in Raman spectral discrimination[J].Optik,2019,184(5):214-219. |
17 | 冯夏庭,赵洪波.岩爆预测的支持向量机[J].东北大学学报(自然科学版),2002,23(1):57-59. |
17 | Feng Xiating,Zhao Hongbo.Prediction of rockburst using support vector machine[J].Journal of Northeastern University(Natural Science),2002,23( 1):57-59. |
18 | 陈晋音,熊晖,郑海斌.基于粒子群算法的支持向量机的参数优化[J].计算机科学,2018,45(6):197-203. |
18 | Chen Jinyin,Xiong Hui,Zheng Haibin.Parameters optimization for SVM based on particle swarm algorithm[J].Computer Science,2018,45(6):197-203. |
19 | Pu Y Y,Apel D B,Xu H W.Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier[J].Tunnelling and Underground Space Technology,2019,90:12-18. |
/
〈 | 〉 |