[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Mining Technology and Mine Management

Study on the Optimization of Stope Structure Parameters in the Large-scale Backfilling Mining of Rangjialong Silver Mine

  • Huaibin SU , 1 ,
  • Qinli ZHANG , 1 ,
  • Deming ZHANG 2 ,
  • Changgen ZENG 3 ,
  • Xiaojiang ZHU 3
Expand
  • 1. School of Resources and Safety Engineering,Central South University,Changsha 410000,Hunan,China
  • 2. Hunan Zhongda Design Institute Co. , Ltd. ,Changsha 410000,Hunan,China
  • 3. Hunan Pengyuan Hongda Mining Co. , Ltd. ,Hengyang 421000,Hunan,China

Received date: 2020-01-06

  Revised date: 2020-05-11

  Online published: 2020-08-27

Highlights

Rangjialong mine is a continuous mining mine,and a large number of mined-out areas are left over from years of open-field mining,which are prone to caving and collapse,thus inducing large-scale ground pressure activities.A large number of pillars are left in the open field method,and the loss of pillar resources is serious.At the same time,tailings pond design dam crest elevation of 165 m,the current has been discharged to 156 m,tailings pond storage capacity is close to saturation,the mine is facing the dilemma of nowhere to discharge the tailings.In order to solve the above problems,the mine will change the current method to the two-step stope backfilling method,which is urgent to determine the safe and reasonable stope structure parameters,mainly considering stope span.In this study,finite element simulation software was used to establish 5 stope structure models with different spans,with a gradient of 5 m and a span range of 15~35 m.The two-step stoping process is simulated,and the stress distribution and displacement variation of the two step stoping pillar and backfill artificial pillar were obtained,and the ultimate strength of the stope rock (or backfill) was compared,and the stope structure parameters were optimized.According to the results of simulation,the value of the tensile stress of the artificial pillar and backfill in each scheme is less than the allowable tensile stress,the safety coefficient of the tensile stress decreases with the increase of the stope width,and the minimum value is close to 2.0.The roof column and pillar under each simulation scheme are not in a state of instability.When the stope span is between 15 m and 25 m,the simulated compressive stress value of the corresponding model is in the critical state or stable state,the compressive stress safety coefficient is greater than 1.3,and the Y direction displacement is uniform.The simulated compressive stress value of the roof pillar is very close to the allowable value when the stope span is greater than 30 m,the roof column is prone to compressive stress failure.The overall displacement change in the Y direction of the filling artificial pillar under 5 schemes does not exceed 10 mm,which is safe and controllable.In order to ensure the economic benefits of the mine,the reasonable stope span is finally determined to be 20~25 m,the stope width is 40 m and the stage height is 80 m.It can provide theoretical support for the recovery of residual ore resources in mines with similar engineering geological conditions.

Cite this article

Huaibin SU , Qinli ZHANG , Deming ZHANG , Changgen ZENG , Xiaojiang ZHU . Study on the Optimization of Stope Structure Parameters in the Large-scale Backfilling Mining of Rangjialong Silver Mine[J]. Gold Science and Technology, 2020 , 28(4) : 550 -557 . DOI: 10.11872/j.issn.1005-2518.2020.04.030

[an error occurred while processing this directive]

安徽省首个5G绿色矿山示范项目启动

2020年8月初,安徽省首个5G绿色矿山示范工程建设项目启动。该项目由安徽省绿色矿山工程研究中心与滁州中联水泥有限公司联合打造,双方就矿山安全、环保和智能化等方面进行深入探索和研究,着力打造高标准国家级绿色矿山。

安徽省绿色矿山工程研究中心是安徽省绿色矿山成套工程技术的研发、技术转化基地,以及技术合作与信息交流的平台,致力于加快推进安徽省绿色矿山建设步伐,提高绿色矿山建设水平。此次与滁州中联水泥有限公司合作,将通过5G通信技术对矿山生产过程进行实时动态监控,矿山全貌将一览无余,真正实现“运筹于帷幄之中,决胜于千里之外”,将矿山生产维持在最佳状态。

与此同时,双方还将通过基于5G通信的新型数字化技术应用,实现设备管理、人员管理、生产供应链和工业生产系统等环节的全面提升,进一步优化管理、节省人力成本、保障安全、提升效率、节能降耗;通过智慧矿山建设,实现“五化三效益”,即资源与开采环境数字化、技术装备智能化、生产过程可视化、信息传输网络化、生产管理与决策科学化,提高环境效益、社会效益、经济效益,最终形成绿色矿山创建的“中联模式”,以示范工程推进绿色矿山建设可持续发展。

(来源:中国矿业报)

2020年上半年我国生产黄金170 t

据中国黄金协会最新统计数据显示,2020年上半年,我国国内原料黄金产量为170.07 t,与2019年同期相比,减产10.61 t,同比下降5.87%。其中,黄金矿产金完成141.82 t,有色副产金完成28.25 t。据悉,随着国内疫情缓解、复工复产率的迅速提升以及国际金价的快速上涨,国内黄金生产全面恢复正常。二季度国内黄金产量环比增长5.81%。

2020年上半年,矿产金产量排名前5的省份为山东、河南、云南、内蒙古和陕西,矿产金产量合计57.69 t,占全国比重达40.68%。多数省份矿产金产量出现下滑,其中,湖北、安徽和贵州等省份受新冠肺炎疫情影响,矿产金产量降幅均超过20%;西藏、青海和河北等省份受疫情影响较轻以及产能增加等原因,矿产金产量实现25%以上的增长。

统计数据显示,2020年上半年全国黄金实际消费量323.29 t,同比下降38.25%。受疫情防控、经济增长放缓和金价上涨等多重因素影响,黄金消费出现较大幅度下滑。2020年上半年黄金价格整体呈上升趋势,国际黄金价格上半年平均价格为1 645.42美元/盎司,同比增长25.94%;上海黄金交易所Au9999黄金上半年平均价格为369.09元/克,同比增长28.28%。

(来源:中国自然资源报)

http://www.goldsci.ac.cn/article/2020/1005-2518/1005-2518-2020-28-4-550.shtml

1
马俊生,任高峰,张聪瑞,等.基于稳定性图表法和数值模拟的采场跨度优化研究[J].中国矿山工程201746(6):7-14.

Ma Junsheng Ren Gaofeng Zhang Congrui,et al.Study on stope span optimization based on stability chart and numerical simulation[J].China Mine Engineering,201746(6):7-14.

2
Feng X T Hudson J.The ways ahead for rock engineering design methodologies[J].International Journal of Rock Mechanics and Mining Sciences200441(2):255-273.

3
Feng X T Hudson J.Rock Engineering Design[M]. London:CRC Press,2011:322-341.

4
董蕾.采动结构参数优化设计及可靠度分析[D].长沙:中南大学,2010.

Dong Lei.Optimization Design and Reliability Analysis of Mining Structure Parameters[D].Changsha:Central South University,2010.

5
蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.

Cai Meifeng.Rock Mechanics Rock Engineering[M]. Beijing:Science Press,2002.

6
王文星.岩体力学[M].长沙:中南大学出版社,2004.

Wang Wenxing.Rock Mass Mechanics[M].Changsha:Central South University Press,2004.

7
杨剑锋.中厚倾斜矿体导流放矿实验研究[D].衡阳:南华大学,2018.

Yang Jianfeng.Experimental Study on Diversion Ore Drawing of Medium-thick Inclined Orebody[D].Hengyang:University of South China,2018.

8
李彬,许梦国,程爱平,等.程潮铁矿放矿模拟试验研究[J].有色金属(矿山部分)201163(5):15-18.

Li Bin Xu Mengguo Cheng Aiping,et al.Simulation experiment of ore drawing in Chengchao iron mine[J]. Nonferrous Metals(Mine Section),201163(5):15-18.

9
刘爱华,董蕾.海水下基岩矿床安全开采顶板厚度计算方法[J].采矿与安全工程学报201027(3):335-340.

Liu Aihua Dong Lei.Calculation methods of roof thickness for safety mining of bedrock deposit undersea water pressure[J].Journal of Mining and Safety Engineering,201027(3):335-340.

10
饶运章,陈辉,肖广哲,等.基于FLAC3D数值模拟采场底部结构设计研究[J].有色金属科学与工程20112(2):43-47.

Rao Yunzhang Chen Hui Xiao Guangzhe,et al.On the design of stope bottom structures based on FLAC3D numerical simulation[J].Jiangxi Nonferrous Metals,20112(2):43-47.

11
王树海,李威.三山岛新立矿区采场结构参数优化研究[J].中国矿业200918(5):53-55,63.

Wang Shuhai Li Wei.Optimization selection of mining method in under-sea deposit in Xinli zone of Sanshandao gold mine[J].China Mining Magazine,200918(5):53-55,63.

12
朱旭波.地下金属矿岩体质量评价与采场结构参数优化研究[D].长沙:中南大学,2011.

Zhu Xubo.Study on Quality Evaluation of Underground Metal Ore Mass and Optimization of Stope Structure Parameters[D].Changsha:Central South University,2011.

13
欧任泽,何立夫.基于3D-σ有限元法的采场结构参数优化[J].有色金属(矿山部分)201971(4):5-11.

Renze Ou He Lifu.Optimization of stope structure parameters based on 3D-σ finite element method[J].Nonferrous Metals(Mine Section),201971(4):5-11.

14
周富华,徐学员,徐宏伟.内蒙古某铅锌矿采场结构参数优化[J].现代矿业201834(11):69-72.

Zhou Fuhua Xu Xueyuan Xu Hongwei.Optimization of the stope structural parameters of a Pb-Zn mine in Inner Mongolia[J]. Modern Mining,201834(11):69-72.

15
刘建东,解联库,曹辉.大规模充填采矿采场稳定性研究与结构参数优化[J].金属矿山201847(12):10-13.

Liu Jiandong Xie Lianku Cao Hui.Study on structural parameters optimization and stability of stope for large-scale backfill mining[J].Metal Mine,201847(12):10-13.

16
曾杨,刘白璞,邓飞,等.淘锡坑钨矿采场结构参数优化[J].有色金属科学与工程20189(3):70-75.

Zeng Yang Liu Baipu Deng Fei,et al.Research on optimizing structure parameters in Taoxikeng tungsten mine[J].Nonferrous Metals Science and Engineering,20189(3):70-75.

17
潘桂海,秦健春.高应力矿体充填法采场结构参数优化研究[J].有色金属(矿山部分)201870(1):20-23.

Pan Guihai Qin Jianchun.Optimization of stope structure parameters with filling method in high-stress mine [J]. Nonferrous Metals(Mine Section),201870(1):20-23.

18
沈珠江.理论土力学[M].北京:中国水利水电出版社,2000

Shen Zhujiang.Theoretical Soil Mechanics[M]. Beijing:China Water Resources and Hydropower Press,2000

19
刘洋树,李安平,王刚,等.VCR法采场结构参数优化的相似模型实验[J].有色矿冶201127(2):10-15.

Liu Yangshu Li Anping Wang Gang,et al.Experimental investigation into effect of span on the stability of VCR stope using physical scale modeling[J].Non-Ferrous Min-ing and Metallurgy,201127(2):10-15.

20
杨帆,侯克鹏,谢永利.岩质高边坡岩体力学参数确定及稳定性研究[J].西安建筑科技大学学报(自然科学版)201143(6):845-853.

Yang Fan Hou Kepeng Xie Yongli.Research on methods to determine mechanical parameters and stability of rock mass from high rock slope[J].Journal of Xi’an University of Architecture and Technology(Natural Science Edition),201143(6):845-853.

21
古德生,李夕兵.现代金属矿床开采科学技术[M].北京:冶金工业出版社,2006.

Gu Desheng Li Xibing.Modern Science and Technology of Metal Deposit Mining[M]. Beijing:Metallurgical Industry Press,2006.

22
孙杨,罗黎明,邓红卫.金属矿山深部采场稳定性分析与结构参数优化[J].黄金科学技术201725(1):99-105.

Sun Yang Luo Liming Deng Hongwei.Stability analysis and parameter optimization of stope in deep metal mines[J].Gold Science and Technology,201725(1):99-105.

23
姜立春,王玉丹.复杂荷载作用下残采矿柱综合安全系数[J].中南大学学报(自然科学版)201849(6):1511-1518.

Jiang Lichun Wang Yudan.Comprehensive safety factor of residual mining pillar under complex loads[J]. Journal of Central South University(Science and Technology),201849(6):1511-1518.

Outlines

/

[an error occurred while processing this directive]