img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mineral Exploration and Resource Evaluation

Trace Elemental Compositions of Iron Oxides from the Lannitang Porphyry Cu-Au Deposit in the Zhongdian Region (Northwest) and the Geological Significances:A LA-ICP-MS Study

  • Jianheng GUO ,
  • Chengbiao LENG ,
  • Xingchun ZHANG ,
  • Wei ZHANG ,
  • Chongjun YIN ,
  • Lujia ZHANG ,
  • Zhendong TIAN
Expand
  • 1. State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,Guizhou,China
    2. Chinese Academy of Science University,Beijing 100039,China
    3. State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,Jiangxi, China
    4. Yunnan Huaxi Mineral Resources Co. ,Ltd. ,Kunming 650200,Yunnan,China

Received date: 2019-06-28

  Revised date: 2019-08-03

  Online published: 2019-11-07

Abstract

The Zhongdian area, located in northwestern Yunnan, is an important porphyry belt in China. It hosts a large number of Triassic intermediate-felsic porphyritic intrusions and porphyry deposits such as Pulang porphyry Cu-Au, Xuejiping porphyry Cu, Chundu porphyry Cu, Langdu Cu skarn and Lannitang porphyry Cu-Au deposit. The Lannitang porphyry Cu-Au deposit is located in west belt of the Zhongdian area. The magnetite in Lannitang porphyry Cu-Au deposit is widespread and it occurred as disseminated and vein types in potassic and chlorite-sericite alteration zone.Specularite is also observed frequently in the post-mineralization dolomite-quartz coarse veins.We conducted the petrography and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to determine the texture and composition of iron oxides (magnetite and specularite). In this study, we identified three types of magnetite. Type-Ⅰ magnetite is disseminated in potassic alteration of deposit. It is generally contains ilmenite lamellas. Type-Ⅱ and Type-Ⅲ magnetite are occurred in magnetite single vein and magnetite-bearing quartz stockwork vein separately. Type-Ⅱ and Type-Ⅲ are distributed in potassic and chlorite-sericite alteration zone. The LA-ICP-MS analyses show that Type-Ⅰ magnetite is relatively rich in V, Ni and Mg than other two types of magnetite. Type-Ⅱ and Type-Ⅲ magnetite are more enriched in Mn, Zn, Sn, Sc and high-Ni/Cr ratio than Type-Ⅰ magnetite.Type-Ⅱ and Type-Ⅲ magnetite has similar content of many trace elements. The concentration of Cr,Ga,Ni and Co in specularite is obviously lower than those of magnetite. The ilmenite lamellae and low-Ni/Cr(Ni/Cr<1) ratio revealed that Type-Ⅰ magnetite belongs to igneous magnetite. Type-Ⅱ and Type-Ⅲ are distributed in veinlets and displayed high-Ni/Cr ratio (Ni/Cr>1). We suggested that they are hydrothermal magnetite. Type-Ⅰ magnetite (igneous) is intergrown with hydrothermal minerals including chlorite and sericite and it has quiet similar contents of Ti, Al and Cr with the other two hydrothermal magnetite.We suggest that Type-Ⅰ magnetite (igneous) experienced late-stage fluid alteration, which induced the loss of Ti, Al and Cr.The similar content of trace element between Type-Ⅱ and Type-Ⅲ magnetite indicated that they may precipitate from same period of fluid.In combination with previous studies, we propose that the presence of elements such as Al, Mn, Mg and Sc are in solid solution within magnetite (and/or specularite),but the Ca, S, Cu, Ba, Sr and Zr may be present in micro-/nano-scale mineral inclusions.The widespread presence of magnetite-hematite and specularite in the potassic alteration zone and low Mn concentration of magnetite indicates a high oxygen fugacity of the Lannitang porphyry Cu-Au deposit (magnetite-hematite buffer).

Cite this article

Jianheng GUO , Chengbiao LENG , Xingchun ZHANG , Wei ZHANG , Chongjun YIN , Lujia ZHANG , Zhendong TIAN . Trace Elemental Compositions of Iron Oxides from the Lannitang Porphyry Cu-Au Deposit in the Zhongdian Region (Northwest) and the Geological Significances:A LA-ICP-MS Study[J]. Gold Science and Technology, 2019 , 27(5) : 659 -677 . DOI: 10.11872/j.issn.1005-2518.2019.05.659

References

1 陈华勇,韩金生 .磁铁矿单矿物研究现状、存在问题和研究方向[J].矿物岩石地球化学通报,2015,34(4):724-730.
1 Chen Huayong , Han Jinsheng .Study of magnetite:Problems and future[J].Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(4):724-730.
2 Dare S A S , Barnes S J , Beaudoin G .Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid,Sudbury,Canada:Implications for provenance discrimination[J].Geochimica et Cosmochimica Acta,2012,88(7):27-50.
3 Dare S A S , Barnes S J , Beaudoin G ,et al .Trace elements in magnetite as petrogenetic indicators[J].Mineralium Deposita,2014,49(7):785-796.
4 Nadoll P , Koenig A E .LA-ICP-MS of magnetite:Methods and reference materials[J].Journal of Analytical Atomic Spectrometry,2011,26(9):1872-1877.
5 Nadoll P , Mauk J , Hayes T ,et al .Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the mesoproterozoic belt supergroup,United States[J].Economic Geology,2012,107(60):1275-1292.
6 邱检生,张晓琳,胡建,等 .鲁西碳酸岩中磷灰石的原位激光探针分析及其成岩意义[J].岩石学报,2009,25(11):2855-2865.
6 Qiu Jiansheng , Zhang Xiaolin , Hu jian ,et al .In-situ LA-ICPMS analysis of apatite from carbonatites in west Shandong Province:Implications for petrogenesis[J].Acta Petrologica Sinica,2009,25(11):2855-2865.
7 贾泽荣,詹秀春,何红蓼,等 .激光烧蚀—等离子体质谱结合归一定量方法原位线扫描检测石榴石多种元素[J].分析化学,2009,37(5):653-658.
7 Jia Zerong , Zhan Xiuchun , He Hongliao ,et al .Application of normalization for In-situ multi-element raster analysis in laser ablation-inductively coupled plasma mass spectrometry-illustrated with garnets[J].Chinese Journal of Analytical Chemistry,2009,37(5):653-658.
8 张乐骏,周涛发,范裕,等 .宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究[J].地质学报,2011,85(5):834-848.
8 Zhang Lejun , Zhou Taofa , Fan Yu ,et al .A LA-ICP-MS study of apatite from the Taocun magnetite-apatite deposit,Ningwu basin[J].Acta Geologica Sinica,2011,85(5):834-848.
9 Dupuis C , Beaudoin G .Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J].Mineralium Deposita,2011,46(4):319-335.
10 Nadoll P , Angerer T , Mauk J L ,et al .The chemistry of hydrothermal magnetite:A review[J].Ore Geology Reviews,2014,61(5):1-32.
11 Pisiak L K , Canil D , Lacourse T ,et al .Magnetite as an indicator mineral in the exploration of porphyry deposits:A case study in till near the mount polley Cu-Au deposit,British Columbia,Canada[J].Economic Geology,2017,112(4):919-940.
12 胡浩,段壮, Luo Yan ,等 .鄂东程潮铁矿床磁铁矿的微量元素组成及其矿床成因意义[J].岩石学报,2014,30(5):1292-1306.
12 Hu Hao , Duan Zhuang , Luo Yan ,et al .Trace element systematics of magnetite from the Chengchao iron deposit in the Daye district:A laser ablation LCP-MS study and insights into ore genesis[J].Acta Petrologica Sinica,2014,30(5):1292-1306.
13 Hu H , Li JW , Lentz D ,et al .Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit:Insights into ore genesis and implication for in-situ chemical analysis of magnetite[J].Ore Geology Reviews,2014,57:393-405.
14 Wen G , Li J W , Hofstra A H ,et al .Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes:Insights from the Handan-Xingtai iron district,North China Craton[J].Geochimica et Cosmochimica Acta,2017,215(15):255-270.
15 Cornell RM , Schwertmann U .The Iron Oxides:Structure,Properties,Reactions,Occurrences,and Uses [M]. 2 eds.Weinheim:Wiley-VCH,2003.
16 Einaudi M T .Description of skarns associated with porphyry copper plutons[C]//Advances in Geology of the Porphyry Copper Deposits.Tucson:The University of Arizona Press,1982:139-183.
17 Meinert L D .Skarn zonation and fluid evolution in the Groundhog Mine,central mining district,New Mexico[J].Economic Geology,1987,82(3):523-545.
18 Meinert L D , Dipple G M , Nicolescu S .World skarn deposits[C]//Economic Geology 100th Anniversary Volume.Colorado:Society of Economic Geologists,2005:299-336.
19 侯增谦,莫宣学 .“三江”地区义敦岛弧的构造—岩浆演化特征[C]//青藏高原地质文集. 北京:地质出版社,1991.
19 Hou Zengqian , Mo Xuanxue .Tectonic-magmatic evolution characteristics of the Yidun Island Arc in the Sanjiang area[C]//Geological Anthology of Qinghai-Tibet Plateau.Beijing:Geological Publishing House,1991.
20 曾普胜,莫宣学,喻学惠,等 .滇西北中甸地区中—酸性斑岩及其含矿性初步研究[J].地球学报,1999,20:359-366.
20 Zeng Pusheng , Mo Xuanxue , Yu Xuehui ,et al .Study on medium-acid porphyry and its ore-bearing properties in Zhongdian area,northwestern Yunnan[J].Acta Geoscientica Sinica,1999,20:359-366.
21 曾普胜,王海平,莫宣学,等 .中甸岛弧带构造格架及斑岩铜矿前景[J].地球学报,2004,25(5):535-540.
21 Zeng Pusheng , Wang Haiping , Mo Xuanxue ,et al .Tectonic setting and prospects of porphyry copper deposits in Zhongdian Island Arc[J].Acta Geoscientica Sinica,2004,25(5):535-540.
22 杨岳清,侯增谦,黄典豪,等 .中甸弧碰撞造山作用和岩浆成矿系统[J].地球学报,2002,23(1):17-24.
22 Yang Yueqing , Hou Zengqian , Huang Dianhao ,et al .Collision orogenic process and magmatic metallogenic system in Zhongdian Arc[J].Acta Geoscientica Sinica,2002,23(1):17-24.
23 李文昌,尹光候,卢映祥,等 .中甸普朗复式斑岩体演化及40Ar-39Ar同位素依据[J].地质学报,2009,83(10):1421-1429.
23 Li Wenchang , Yin Guanghou , Lu Yingxiang ,et al .The evolution and 40Ar-39Ar isotopic evidence of the Pulang complex in Zhongdian[J].Acta Geologica Sinica,2009,83(10):1421-1429.
24 侯增谦,杨岳清,曲晓明,等 .三江地区义敦岛弧造山带演化和成矿系统[J].岩石学报,2004,78(1):109-120.
24 Hou Zengqian , Yang Yueqing , Qu Xiaoming ,et al .Tectonic evolution and mineralization systems of Yidun Arc orogen in Sanjiang region,China[J].Acta Geologica Sinica,2004,78(1):109-120.
25 李建康,李文昌,王登红,等 .中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究[J].岩石学报,2007,23(10):2415-2422.
25 Li Jiankang , Li Wenchang , Wang Denghong ,et al .Re-Os dating for ore-forming event in the late of Yanshan epoch and research of ore-forming regularity in Zhongdian Arc[J].Acta Petrologica Sinica,2007,23(10):2415-2422.
26 冷成彪,张兴春,王守旭,等 .滇西北中旬松诺含矿斑岩的锆石SHRIMP U-Pb年龄及地质意义[J].大地构造与成矿学,2008,32(1):124-130.
26 Leng Chengbiao , Zhang Xingchun , Wang Shouxu ,et al .Shrimp zircon U-Pb dating of the Songnuo ore-hosted porphyry,Zhongdian,northwest Yunnan,China and its geological implication[J].Geotectonica et Metallogenia,2008,32(1):124-130.
27 王守旭,张兴春,冷成彪,等 .滇西北普朗斑岩铜矿锆石离子探针U-Pb年龄:成矿时限及地质意义[J].岩石学报,2008,24(10):2313-2321.
27 Wang Shouxu , Zhang Xingchun , Leng Chengbiao ,et al .Shrimp U-Pb dating of the Pulang porphyry copper deposit,northwestern Yunnan,China:The ore-forming time limitation and geological[J].Acta Petrologica Sinica,2008,24(10):2313-2321.
28 庞振山,杜杨松,王功文,等 .云南普朗复式岩体锆石U-Pb年龄和地球化学特征及其地质意义[J].岩石学报,2009,25(1):159-165.
28 Pang Zhenshan , Du Yangsong , Wang Gongwen ,et al .Single-grain zircon U-Pb isotope ages,geochemistry and its implication of Pulang complex in Yunnan Province,China[J].Acta Petrologica Sinica,2009,25(1):159-165.
29 任江波,许继峰 ,陈建林 .中甸岛弧成矿斑岩的锆石年代学及其意义[J].岩石学报,2011,27(9):2591-2599.
29 Ren Jiangbo , Xu Jifeng , Chen Jianlin .Zircon geochronology and geolpgical implications of ore-forming porphyries from Zhongdian arc[J].Acta Petrologica Sinica,2011,27(9):2591-2599.
30 Leng C B , Zhang X C , Hu R Z ,et al .Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian,northwest Yunnan,China[J].Journal of Asian Earth Sciences,2012,60(22):31-48.
31 Leng C B , Huang Q Y , Zhang X C ,et al .Petrogenesis of the Late Triassic volcanic rocks in the southern Yidun arc,SW China:Constraints from the geochronology,geochemistry,and Sr-Nd-Pb-Hf isotopes[J].Lithos,2014,190-191(2):363-382.
32 Wang X S , Bi X W , Leng C B ,et al .Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc,SW China:Implications for metallogenesis and geodynamic setting[J].Ore Geology Reviews,2014,61:73-95.
33 Wang X S , Hu R Z , Bi X W ,et al .Petrogenesis of Late Cretaceous I-type granites in the southern Yidun Terrane:New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau[J].Lithos,2014,208-209:202-219.
34 紫金矿业集团西南矿产勘察院 .云南香格里拉县烂泥塘及外围地勘项目2013年地质年报[R].云南:紫金矿业集团西南矿产勘察院,2013.
34 Southwest Mineral Exploration Institute of Zijin Group.Geological annual report of Lannitang and peripheral area in Shangri-la County ,Yunnan Province[R].Yunnan:Southwest Mineral Exploration Institute of Zijin Group,2013.
35 Liu Y , Hu Z , Gao S ,et al .In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,2008,257(1):34-43.
36 Ilton E S , Eugster H P .Base metal exchange between magnetite and a chloride-rich hydrothermal fluid[J].Geochimica et Cosmochimica Acta,1989,53(2):291-301.
37 Ray G , Webster I .Geology and chemistry of the low Ti magnetite-bearing Heff Cu-Au skarn and its associated plutonic rocks,Heffley Lake,south-central British[J].Columbia Exploration and Mining Geology,2007,16 (16):159-186.
38 Kamvong T , Zaw K , Siegele R .PIXE/PIGE microanalysis of trace elements in hydrothermal magnetite and exploration significance:A pilot study[C]//5th Australian Conference on Nuclear and Complementary Techniques of Analysis and 9th Vacuum Society of Australia.Melbourne:University of Melbourne,2007:197-200.
39 Góngora P A , Gleeson S A , Samson I M .Trace element geochemistry of magnetite and its relationship to Cu-Bi-Co-Au-Ag-U-W mineralization in the Great Bear magmatic zone,NWT,Canada[J].Economic Geology,2014,109:1901-1928.
40 潘兆橹 .结晶学与矿物学[M].北京:地质出版社,1984:67-71.
40 Pan Zhaolu .Crystallography and Mineralogy[M].Beijing:Geological Publishing House,1984:67-71.
41 段士刚,董满华,张作衡,等 .西天山敦德铁矿床磁铁矿原位LA-ICP-MS元素分析及意义[J].矿床地质,2014,33(6):1325-1337.
41 Duan Shigang , Dong Manhua , Zhang Zuoheng ,et al .A LA-ICP-MS analysis of elements inmagnetite from Dunde iron deposit in western Tianshan Mountains,Xinjiang:Constraints on genesis of the deposit[J].Mineral Deposits,2014,33(6):1325-1337.
42 Sack R O , Ghiorso M S .An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels[J].Contribions to Mineralogy and Petrology,1991,106:474-505.
43 Waychunas G A . Crystal chemistry of oxides and oxy-hydroxides[C]//Lindsley D H.Oxide Minerals:Petrologic and Magnetic Significance.Washington:Mineralogical Society American, 1991:11-61.
44 White A F , Peterson M L , Hochella M F .Electrochemistry and dissolution kinetics of magnetite and ilmenite[J].Geochimica et Cosmochimica Acta,1994,58(8):1859-1875.
45 Sillitoe R H .Porphyry copper systems[J].Economic Geology,2010,105(105):3-41.
46 芮宗瑶,黄崇轲,齐国明,等 .中国斑岩铜(钼)矿床[M].北京:地质出版社,1984.
46 Rui Zongyao , Huang Chongke , Qi Guoming ,et al .The Porphyry Cu (Mo) Deposit in China[M].Beijing:Geological Publishing House,1984.
47 Ishihara S .The magnetite-series and ilmenite-series granitic rocks[J].Shigen-Chishitsu,1977,27:293-305.
48 Spong P L .Geochemistry of Magnetite from Convergent-margin Plutonic Rocks of Australia,Japan and New Zealand[D].Auckland:University of Auckland,1998.
49 Ohmoto H .Nonredox transformations of magnetite-hematite in hydrothermal systems[J].Economic Geology,2003,98(1):157-161.
50 Mücke A , Cabral A R .Redox and nonredox reactions of magnetite and hematite in rocks[J].Chemie der Erde- Geochemistry,2005,65(3):271-278.
51 Ballard J R , Palin M J , Campbell I H .Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon:Application to porphyry copper deposits of northern Chile[J].Contributions to Mineralogy and Petrology,2002,144(3):347-364.
52 Sun W D , Arculus R J , Kamenetsky V S ,et al .Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization[J].Nature,2004,431(7011):975-978.
53 Liang H Y , Sun W D , Su W C ,et al .Porphyry copper-gold mineralization at Yulong,China,promoted by decreasing redox potential during magnetite alteration[J].Economic Geology,2009,104 (4):587-596.
54 Sun W D , Liang H Y , Ling M X ,et al .The link between reduced porphyry copper deposits and oxidized magmas[J].Geochimica et Cosmochimica Acta,2013,103(2):263-275.
55 Zhang H , Ling M X , Liu Y L ,et al .High oxygen fugacity and slab melting linked to Cu mineralization:Evidence from Dexing porphyry copper deposits,southeastern China[J].The Journal of Geology,2013,121(3):289-305.
56 Richards J P .Discussion of Sun et al:The link between reduced porphyry copper deposits and oxidized magmas[J].Geochimica et Cosmochimica Acta,2014,126(2):643-645.
57 Pokrovski G S , Dubrovinsky L S .Ion is stable in geological fluids at elevated temperatures and pressures[J].Science,2011,331(6020):1052.
58 林师整 .磁铁矿矿物化学、成因及演化的探讨[J].矿物学报,1982(3):166-174.
58 Lin Shizheng .A concribution on the chemistry,genesis and evolution of magnetite[J].Acta Mineralogica Sinica,1982(3):166-174.
59 Toplis M J , Carroll M R .An experimental study of the influence of oxygen fugacityon Fe-Ti oxide stability,phase relations,and mineral-melt equilibria in ferro-basaltic systems[J].Journal of Petrology,1995,36:1137-1170.
60 Sillitoe R H .Gold-rich porphyry deposits:Description of genetic models and their role in exploration and discovery[J].Economic Geology,2000,13:315-345.
61 Canil D , Grondahl C , Lacourse T ,et al .Trace elements in magnetite from porphyry Cu-Mo-Au deposits in British Columbia,Canada[J].Ore Geology Reviews,2016,72:1116-1128.
Outlines

/