[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Trace Elemental Compositions of Iron Oxides from the Lannitang Porphyry Cu-Au Deposit in the Zhongdian Region (Northwest) and the Geological Significances:A LA-ICP-MS Study
Received date: 2019-06-28
Revised date: 2019-08-03
Online published: 2019-11-07
The Zhongdian area, located in northwestern Yunnan, is an important porphyry belt in China. It hosts a large number of Triassic intermediate-felsic porphyritic intrusions and porphyry deposits such as Pulang porphyry Cu-Au, Xuejiping porphyry Cu, Chundu porphyry Cu, Langdu Cu skarn and Lannitang porphyry Cu-Au deposit. The Lannitang porphyry Cu-Au deposit is located in west belt of the Zhongdian area. The magnetite in Lannitang porphyry Cu-Au deposit is widespread and it occurred as disseminated and vein types in potassic and chlorite-sericite alteration zone.Specularite is also observed frequently in the post-mineralization dolomite-quartz coarse veins.We conducted the petrography and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to determine the texture and composition of iron oxides (magnetite and specularite). In this study, we identified three types of magnetite. Type-Ⅰ magnetite is disseminated in potassic alteration of deposit. It is generally contains ilmenite lamellas. Type-Ⅱ and Type-Ⅲ magnetite are occurred in magnetite single vein and magnetite-bearing quartz stockwork vein separately. Type-Ⅱ and Type-Ⅲ are distributed in potassic and chlorite-sericite alteration zone. The LA-ICP-MS analyses show that Type-Ⅰ magnetite is relatively rich in V, Ni and Mg than other two types of magnetite. Type-Ⅱ and Type-Ⅲ magnetite are more enriched in Mn, Zn, Sn, Sc and high-Ni/Cr ratio than Type-Ⅰ magnetite.Type-Ⅱ and Type-Ⅲ magnetite has similar content of many trace elements. The concentration of Cr,Ga,Ni and Co in specularite is obviously lower than those of magnetite. The ilmenite lamellae and low-Ni/Cr(Ni/Cr<1) ratio revealed that Type-Ⅰ magnetite belongs to igneous magnetite. Type-Ⅱ and Type-Ⅲ are distributed in veinlets and displayed high-Ni/Cr ratio (Ni/Cr>1). We suggested that they are hydrothermal magnetite. Type-Ⅰ magnetite (igneous) is intergrown with hydrothermal minerals including chlorite and sericite and it has quiet similar contents of Ti, Al and Cr with the other two hydrothermal magnetite.We suggest that Type-Ⅰ magnetite (igneous) experienced late-stage fluid alteration, which induced the loss of Ti, Al and Cr.The similar content of trace element between Type-Ⅱ and Type-Ⅲ magnetite indicated that they may precipitate from same period of fluid.In combination with previous studies, we propose that the presence of elements such as Al, Mn, Mg and Sc are in solid solution within magnetite (and/or specularite),but the Ca, S, Cu, Ba, Sr and Zr may be present in micro-/nano-scale mineral inclusions.The widespread presence of magnetite-hematite and specularite in the potassic alteration zone and low Mn concentration of magnetite indicates a high oxygen fugacity of the Lannitang porphyry Cu-Au deposit (magnetite-hematite buffer).
Jianheng GUO , Chengbiao LENG , Xingchun ZHANG , Wei ZHANG , Chongjun YIN , Lujia ZHANG , Zhendong TIAN . Trace Elemental Compositions of Iron Oxides from the Lannitang Porphyry Cu-Au Deposit in the Zhongdian Region (Northwest) and the Geological Significances:A LA-ICP-MS Study[J]. Gold Science and Technology, 2019 , 27(5) : 659 -677 . DOI: 10.11872/j.issn.1005-2518.2019.05.659
成文过程得到了中国地质科学院地球化学研究所陈伟研究员的指导,在此表示衷心感谢!
1 |
陈华勇,韩金生 .磁铁矿单矿物研究现状、存在问题和研究方向[J].矿物岩石地球化学通报,2015,34(4):724-730.
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
邱检生,张晓琳,胡建,等 .鲁西碳酸岩中磷灰石的原位激光探针分析及其成岩意义[J].岩石学报,2009,25(11):2855-2865.
|
7 |
贾泽荣,詹秀春,何红蓼,等 .激光烧蚀—等离子体质谱结合归一定量方法原位线扫描检测石榴石多种元素[J].分析化学,2009,37(5):653-658.
|
8 |
张乐骏,周涛发,范裕,等 .宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究[J].地质学报,2011,85(5):834-848.
|
9 |
|
10 |
|
11 |
|
12 |
胡浩,段壮,
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
侯增谦,莫宣学 .“三江”地区义敦岛弧的构造—岩浆演化特征[C]//青藏高原地质文集. 北京:地质出版社,1991.
|
20 |
曾普胜,莫宣学,喻学惠,等 .滇西北中甸地区中—酸性斑岩及其含矿性初步研究[J].地球学报,1999,20:359-366.
|
21 |
曾普胜,王海平,莫宣学,等 .中甸岛弧带构造格架及斑岩铜矿前景[J].地球学报,2004,25(5):535-540.
|
22 |
杨岳清,侯增谦,黄典豪,等 .中甸弧碰撞造山作用和岩浆成矿系统[J].地球学报,2002,23(1):17-24.
|
23 |
李文昌,尹光候,卢映祥,等 .中甸普朗复式斑岩体演化及40Ar-39Ar同位素依据[J].地质学报,2009,83(10):1421-1429.
|
24 |
侯增谦,杨岳清,曲晓明,等 .三江地区义敦岛弧造山带演化和成矿系统[J].岩石学报,2004,78(1):109-120.
|
25 |
李建康,李文昌,王登红,等 .中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究[J].岩石学报,2007,23(10):2415-2422.
|
26 |
冷成彪,张兴春,王守旭,等 .滇西北中旬松诺含矿斑岩的锆石SHRIMP U-Pb年龄及地质意义[J].大地构造与成矿学,2008,32(1):124-130.
|
27 |
王守旭,张兴春,冷成彪,等 .滇西北普朗斑岩铜矿锆石离子探针U-Pb年龄:成矿时限及地质意义[J].岩石学报,2008,24(10):2313-2321.
|
28 |
庞振山,杜杨松,王功文,等 .云南普朗复式岩体锆石U-Pb年龄和地球化学特征及其地质意义[J].岩石学报,2009,25(1):159-165.
|
29 |
任江波,许继峰 ,陈建林 .中甸岛弧成矿斑岩的锆石年代学及其意义[J].岩石学报,2011,27(9):2591-2599.
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
紫金矿业集团西南矿产勘察院 .云南香格里拉县烂泥塘及外围地勘项目2013年地质年报[R].云南:紫金矿业集团西南矿产勘察院,2013.
Southwest Mineral Exploration Institute of Zijin Group.Geological annual report of Lannitang and peripheral area in Shangri-la County ,Yunnan Province[R].Yunnan:Southwest Mineral Exploration Institute of Zijin Group,2013.
|
35 |
|
36 |
|
37 |
|
38 |
|
39 |
|
40 |
潘兆橹 .结晶学与矿物学[M].北京:地质出版社,1984:67-71.
|
41 |
段士刚,董满华,张作衡,等 .西天山敦德铁矿床磁铁矿原位LA-ICP-MS元素分析及意义[J].矿床地质,2014,33(6):1325-1337.
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
芮宗瑶,黄崇轲,齐国明,等 .中国斑岩铜(钼)矿床[M].北京:地质出版社,1984.
|
47 |
|
48 |
|
49 |
|
50 |
|
51 |
|
52 |
|
53 |
|
54 |
|
55 |
|
56 |
|
57 |
|
58 |
林师整 .磁铁矿矿物化学、成因及演化的探讨[J].矿物学报,1982(3):166-174.
|
59 |
|
60 |
|
61 |
|
/
〈 |
|
〉 |