img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search

Research Progress of Rock Crack Propagation Under Impact Loading

  • Sheng ZENG ,
  • Shaoping WANG ,
  • Ni ZHANG
Expand
  • 1. Hunan Provincial Key Laboratory of Key Technology on Hydropower Development,Changsha 410014,Hunan,China
    2. School of Resource and Environment and Safety Engineering,University of South China,Hengyang 421001,Hunan,China

Received date: 2018-01-04

  Revised date: 2018-06-10

  Online published: 2019-03-19

Abstract

In the study of rock dynamic mechanical behavior,rock crack propagation model reveals the crack propagation process of rock materials under dynamic loads theoretically,and provides theoretical support for the failure law of rock materials under dynamic loads.Rock fracture toughness can be used to characterize the fracture resistance of rock materials or the resistance to produce new cracks.Especially when there are a few main cracks acting on rock materials,fracture toughness can predict fracture failure of rock materials more effectively than other strength parameters.However,stress intensity factors are used in the calculation of fracture toughness and stress field of rock materials,the description of crack propagation process and the stability evaluation of engineering rock mass.Therefore,two important parameters,stress intensity factor and fracture toughness,are indispensable for describing the crack propagation process and evaluating the stability of rock materials.In order to provide theoretical basis for deformation mechanism and stability control of the surrounding rock mass in deep resource exploitation and large underground space engineering,the previous research results are summarized by referring to a large number of domestic and foreign literatures about crack propagation models,stress intensity factors and fracture toughness that characterize rock crack propagation.From the existing research results, it is concluded that the anisotropy of rock material structure leads to its non-linear characteristics.If only elastic mechanics or fracture mechanics are used to describe the failure process of rock,it will be difficult to obtain ideal results.Therefore,the damage mechanics is gradually introduced into the study of rock fracture failure.Among which,the introduction of damage mechanics is mainly due to the rise and application of non-linear science such as fractal,self-organization and chaos.Because the accuracy of stress intensity factor and fracture toughness is very important for predicting rock crack growth,the research on stress intensity factor and fracture toughness of rock mainly focuses on its testing methods or influencing factors.The testing methods of rock dynamic stress intensity factor mainly include strain gauge method,caustic method and photoelastic method,and the influencing factors mainly include stress factors and geometric factors of cracks and materials.Although there are many testing methods for rock dynamic fracture toughness,the commonly used ones are three-point bending dynamic fracture test technology,sharpy impact test method and split hopkinson pression bar (SHPB) test.The testing methods based on SHPB device can be divided into three categories,they are impact tensile dynamic fracture test,unilateral impact dynamic fracture test and central crack disc dynamic fracture test.Based on the existing research,several suggestions for rock crack propagation under dynamic load are proposed.(1)A theoretical model for the evolution process of rock material from microscopic fracture to macroscopic damage is established by comprehensively considering elastic mechanics,fracture mechanics and damage mechanics to make the theoretical model more suitable for the nonlinear characteristics of rock material;(2)Nonlinear theories such as fractal,self-organization and chaos are adopted to characterize the propagation and evolution of cracks in rock and surface under dynamic loading;(3)The crack propagation and evolution characteristics of rock materials are simulated by particle discrete element method and finite difference method.

Cite this article

Sheng ZENG , Shaoping WANG , Ni ZHANG . Research Progress of Rock Crack Propagation Under Impact Loading[J]. Gold Science and Technology, 2019 , 27(1) : 52 -62 . DOI: 10.11872/j.issn.1005-2518.2019.01.052

References

1 XuP,YangS Q.A fracture damage constitutive model for fissured rock mass and its experimental verification[J].Arabian Journal of Geosciences,2017,10(7):164-172.
2 ZhangZ X,KouS Q,YuJ,et al.Effects of loading rate on rock fracture[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(5):597-611.
3 姜伟,杨平,董琴.平板穿透裂纹尖端动态应力强度因子研究[J].武汉理工大学学报(交通科学与工程版),2016,46(5):820-825.
3 JiangWei,YangPing,DongQin.Research on dynamic stress intensity factors for through-cracked plates[J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2016,46(5):820-825.
4 ZhuZ M,XuW T,FengR Q.A new method for measuring mode-I dynamic fracture toughness of rock under blasting loads[J].Experimental Techniques,2016,40(3):899-905.
5 YaoW,XuY,YuC Y,et al.A dynamic punch-through shear method for determining dynamic mode Ⅱ fracture toughness of rocks[J].Engineering Fracture Mechanics,2017,176:161-177.
6 满轲.岩石动态断裂韧性测试的失稳判据研究[J].科学技术与工程,2016,16(29):147-152.
6 ManKe.Research on rock unstable failure criterion of dynamic fracture toughness[J].Science Technology and Engineering,2016,16(29):147-152.
7 HarriesG.A mathematical model of cratering and blasting[C]//National Symposium on Rock Fragmentation.Adelaide:Institution of Engineers,1973:41-45.
8 FavreauR F.台阶爆破岩石位移速度[C]//第一届国际爆破破岩会议.长沙:中国长沙岩石力学工程技术咨询公司,1983:408-417.
8 FavreauR F.Rock displacement velocity of bench blasting[C]//The First International Blasting Rock Breaking Conference.Changsha:China Changsha Rock Mechanics Engineering Technology Consulting Company,1983:408-417.
9 MargolinL G.A generalized Griffith criterion for crack propagation [J].Engineering Fracture Mechanics,1984,19(3):539-543.
10 JohnsonB C,BowlingT J,MeloshH J.Steps toward implementing the grady-kipp fragmentation model in an Eulerian hydrocode[C]//47th Lunar and Planetary Science Conference.Houston:Lunar and Planetary Institute,2016:1-2.
11 TaylorL M,ChenE P,KuszmaulJ S.Microcrack-induced damage accumulation in brittle rock under dynamic loading[J].Computer Methods in Applied Mechanics and Engineering,1986,55(3):301-320.
12 ThorneB J,HommertP J,BrownB.Experimental and computational investigation of the fundamental mechanisms of cratering[C]//The Third International Symposium on Fragmentation by Blasting.Queensland:Proceedings of the Third International Symposium on Fragmentation by Blasting,1990.
13 YangR,BawdenW F,KatsabanisP D.A new constitutive model for blast damage[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996,33(3):245-254.
14 祝文化,明锋,宋成梓.爆破荷载作用下岩体损伤破坏的分形研究[J].岩土力学,2011,32(10):3131-3135.
14 ZhuWenhua,MingFeng,SongChengzi.Fractal study of rock damage under blasting loading[J].Rock and Soil Mechanics,2011,32(10):3131-3135.
15 XieN,ZhuQ Z,XuL H,et al.A micromechanics-based elastoplastic damage model for quasi-brittle rocks[J].Computers and Geotechnics,2011,38(8):970-977.
16 GokceogluC,ZorluK.A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock[J].Engineering Applications of Artificial Intelligence,2004,17(1):61-72.
17 金解放,钟海兵,吴越,等.静载荷与循环冲击作用下岩石损伤变量定义方法的选择[J].有色金属科学与工程,2013,4(4):85-90.
17 JinJiefang,ZhongHaibing,WuYue,et al.Method selection for defining damage variable of rock subjected to static loadings and cyclic impacts[J].Nonferrous Metals Science and Engineering,2013,4(4):85-90.
18 李术才,许新骥,刘征宇,等.单轴压缩条件下砂岩破坏全过程电阻率与声发射响应特征及损伤演化[J].岩石力学与工程学报,2014,33(1):14-23.
18 LiShucai,XuXinji,LiuZhengyu,et al.Electrical resistivity and acoustic emission response characteristics and damage evolution of sandstone during whole process of uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(1):14-23.
19 李晓照,邵珠山.脆性岩石渐进及蠕变失效特性宏细观力学模型研究[J].岩土工程学报,2016,38(8):1391-1398.
19 LiXiaozhao,ShaoZhushan.Macro-micro mechanical model for progressive and creep failure of brittle rock[J].Chinese Journal of Geotechnical Engineering,2016,38(8):1391-1398.
20 陈俊桦,张家生,李新平.考虑岩体完整程度的岩石爆破损伤模型及应用[J].岩土工程学报,2016,38(5):857-866.
20 ChenJunye,ZhangJiasheng,LiXinping.Model of rock blasting-induced damage considering integrity of rock mass and its application[J].Chinese Journal of Geotechnical Engineering,2016,38(5):857-866.
21 孟茁超,周科平.基于拉—压损伤模型的爆破漏斗动力响应分析[J].中南大学学报(自然科学版),2012,43(7):2717-2722.
21 MengZhuochao,ZhouKeping.Dynamic response of blasting crater based on tension-compression damage model[J].Journal of Central South University (Science and Technology),2012,43(7):2717-2722.
22 胡英国,卢文波,陈明,等.岩石爆破损伤模型的比选与改进[J].岩土力学,2012,33(11):3278-3284.
22 HuYingguo,LuWenbo,ChenMing,et al.Comparison and improvement of blasting damage models for rock[J].Rock and Soil Mechanics,2012,33(11):3278-3284.
23 褚怀保,杨小林,梁为民,等.含瓦斯煤体爆破损伤模型研究[J].煤矿安全,2015,46(11):24-26.
23 ChuHuaibao,YangXiaolin,LiangWeimin,et al.Study on blasting damage model of coal containing gas[J].Safety in Coal Mines,2015,46(11):24-26.
24 谢和平,高峰,周宏伟,等.岩石断裂和破碎的分形研究[J].防灾减灾工程学报,2003,23(4):1-9.
24 XieHeping,GaoFeng,ZhouHongwei,et al.Fractal fracture and fragmentation in rocks[J].Journal of Disaster Prevention and Mitigation Engineering,2003,23(4):1-9.
25 尹光志,代高飞,万 玲,等.岩石微裂纹演化的分岔混沌与自组织特征[J].岩石力学与工程学报,2002,21(5):635-639.
25 YinGuangzhi,DaiGaofei,WanLing,et al. Characteristics of bifurcation,chaos and self-organization of evolution of micro-cracks in rock[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(5):635-639.
26 SunX Z,ShenB,LiY Y,et al.Laboratory study of three-dimensional crack propagation in rock-like material under uniaxial compression[J].Rock Mechanics and Rock Engineering,2016,49(10):1-16.
27 BungerA P,KearJ,DyskinA V,et al.Sustained acoustic emissions following tensile crack propagation in a crystalline rock[J].International Journal of Fracture,2015,193(1):87-98.
28 SahouryehE,DyskinA V,GermanovichL N.Crack growth under biaxial compression[J].Engineering Fracture Mechanics,2002,69(18):2187-2198.
29 杨永明,鞠杨,陈佳亮.劈裂荷载下孔隙岩石应力分布特征与裂纹扩展行为[J].煤炭学报,2014,39(4):658-665.
29 YangYongming,JuYang,ChenJialiang.Distribution properties of stress and cracks propagation behavior of porous rocks during splitting[J].Journal of China Coal Society,2014,39(4):658-665.
30 程立朝,许江,冯丹,等.岩石剪切细观开裂演化与贯通机制分析[J].岩土力学,2016,37(3):655-664.
30 ChengLichao,XuJiang,FengDan,et al.Analysis of mesoscopic cracking propagation and coalescence mechanisms of rocks subject to shearing[J].Rock and Soil Mechanics,2016,37(3):655-664.
31 宋义敏,何爱军,王泽军,等.冲击载荷作用下岩石动态断裂试验研究[J].岩土力学,2015,36(4):965-970.
31 SongYimin,HeAijun,WangZejun,et al.Experiment study of the dynamic fractures of rock under impact loading[J].Rock and Soil Mechanics,2015,36(4):965-970.
32 王蒙,朱哲明,王雄.冲击荷载作用下的Ⅰ/Ⅱ复合型裂纹扩展规律研究[J].岩石力学与工程学报,2016,35(7):1323-1332.
32 WangMeng,ZhuZheming,WangXiong.The growth of mixed-mode Ⅰ/Ⅱ crack under impacting loads[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1323-1332.
33 李炼,杨丽萍,曹富,等.冲击加载下的砂岩动态断裂全过程的实验和分析[J].煤炭学报,2016,41(8):1912-1922.
33 LiLian,YangLiping,CaoFu,et al.Complete dynamic fracture process of sandstone under impact loading:Experiment and analysis[J].Journal of China Coal Society,2016,41(8):1912-1922.
34 KangY S,LiuQ S,LiuX Y,et al.Theoretical and numerical studies of crack initiation and propagation in rock masses under freezing pressure and far-field stress[J].Journal of Rock Mechanics and Geotechnical Engineering,2014,6(5):466-476.
35 HaeriH, ShahriarK, MarjiM F,et al.Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks[J].International Journal of Rock Mechanics and Mining Sciences,2014,67:20-28.
36 JiangM J,ChenH,CrostaG B.Numerical modeling of rock mechanical behavior and fracture propagation by a new bond contact model[J].International Journal of Rock Mechanics and Mining Sciences,2015,78:175-189.
37 MotamediM G,WeedD A,FosterC D.Numerical simulation of mixed mode (Ⅰ and Ⅱ) fracture behavior of pre-cracked rock using the strong discontinuity approach[J].International Journal of Solids and Structures,2016,85/86:44-56.
38 WuZ J,WongL N Y.Modeling cracking behavior of rock mass containing inclusions using the enriched numerical manifold method[J].Engineering Geology,2013,162(4):1-13.
39 ArakawaK,MadaT,TakahashiK.Correlations among dynamic stress intensity factor,crack velocity and acceleration in brittle fracture[J].International Journal of Fracture,2000,105(4):311-320.
40 KobayashiA,OhtaniN,MunemuraM.Dynamic stress intensity factors during viscoelastic crack propagation at various strain rates[J].Journal of Applied Polymer Science,2010,25(12):2789-2793.
41 EvoraV M F,JainN,ShuklaA.Stress intensity factor and crack velocity relationship for polyester/TiO2 nanocomposites[J].Experimental Mechanics,2005,45(2):153-159.
42 SongC M,VrceljZ.Evaluation of dynamic stress intensity factors and T-stress using the scaled boundary finite-element method[J].Engineering Fracture Mechanics,2008,75(8):1960-1980.
43 ItouS.Effect of couple-stresses on the Mode I dynamic stress intensity factors for two equal collinear cracks in an infinite elastic medium during passage of time-harmonic stress waves[J].International Journal of Solids and Structures,2013,50(10):1597-1604.
44 HandaT,ShimadaY,KawabataT,et al.Effect of stress reflection on dynamic stress intensity factor of crack arrest toughness specimen-Study on standard test method for crack arrest toughness[C]//Proceedings of the Twenty-fourth International Ocean and Polar Engineering Conference.Busan:International Society of Offshore and Polar Engineers,2014,96(10):21-30.
45 ZhangC,GrossD.Pulse shape effects on the dynamic stress intensity factor[J].International Journal of Fracture,1992,58(1):55-75.
46 LiC,WengG J,DuanZ,et al.Dynamic stress intensity factor of a functionally graded material under antiplane shear loading[J].Acta Mechanica,2001,149(1/2/3/4):1-10.
47 MaL,LiJ,AbdelmoulaR,et al.Dynamic stress intensity factor for cracked functionally graded orthotropic medium under time-harmonic loading[J].European Journal of Mechanics,2007,26(2):325-336.
48 RokachI V.On the numerical evaluation of the anvil force for accurate dynamic stress intensity factor determination[J].Engineering Fracture Mechanics,2003,70(15):2059-2074.
49 Mykhas’kivV V,ZhbadynskyiI Y.Effect of the compliant interlayer on the dynamic stress intensity factor in a piecewise-homogeneous solid with a circular crack[J].Journal of Applied Mechanics and Technical Physics,2008,49(3):510-518.
50 KravetsV S.Influence of the shape of curvilinear cracks on the dynamic stress intensity factors[J].Materials Science,2015,50(6):792-804.
51 FowellR J,XuC,DowdP A.An update on the fracture toughness testing methods related to the cracked chevron-notched Brazilian disk (CCNBD) specimen[J].Pure and Applied Geophysics,2006,163(5/6):1047-1057.
52 杨井瑞,张财贵,周妍,等.用SCDC试样测试岩石动态断裂韧度的新方法[J].岩石力学与工程学报,2015,34(2):279-292.
52 YangJingrui,ZhangCaigui,ZhouYan,et al.A new method for determining dynamic fracture toughness of rock using SCDC specimens[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(2):279-292.
53 孙欣,朱哲明,谢凌志,等.基于SENDB试样的砂岩复合脆性断裂行为研究[J].岩石力学与工程学报,2017,36(12):2884-2894.
53 SunXin,ZhuZheming,XieLingzhi,et al.Investigation on mixed-mode fracture behavior of sand stone using a SENDB specimen[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(12):2884-2894.
54 SorochakA P,MaruschakP O,YasniyO P,et al.Evaluation of dynamic fracture toughness parameters of locomotive axle steel by instrumented Charpy impact test[J].Fatigue and Fracture of Engineering Materials and Structures,2017,40(4):512-522.
55 VisserH A,CaimmiF,PavanA.Characterising the fracture toughness of polymers at moderately high rates of loading with the use of instrumented tensile impact testing[J].Engineering Fracture Mechanics,2013,101:67-79.
56 WadaH,SeikaM,KennedyT C,et al.Investigation of loading rate and plate thickness effects on dynamic fracture toughness of PMMA[J].Engineering Fracture Mechanics,1996,54(6):805-811.
57 崔智丽,宫能平,经来旺.岩石非理想裂纹圆盘试件动态断裂韧性测试的有限元分析及试验研究[J].岩土力学,2015,36(3):694-702.
57 CuiZhili,GongNengping,JingLaiwang.Experiment and finite element analysis of rock dynamic fracture toughness test on nonideal crack disc specimens[J].Rock and Soil Mechanics,2015,36(3):694-702.
58 张盛,王启智.采用中心圆孔裂缝平台圆盘确定岩石的动态断裂韧度[J].岩土工程学报,2006,28(6):723-728.
58 ZhangSheng,WangQizhi.Method for determination of dynamic fracture toughness of rock using holed-crack flattened disk specimen[J].Chinese Journal of Geotechnical Engineering,2006,28(6):723-728.
59 冯峰,韦重耕,王启智.用中心直裂纹平台巴西圆盘测试岩石动态断裂韧度的尺寸效应[J].工程力学,2009,26(4):167-173.
59 FengFeng,WeiChonggeng,WangQizhi.Size effect for rock dynamic fracture toughness tested with cracked straight through flattened brazilian disc[J].Engineering Machanics,2009,26(4):167-173.
60 BackersT,StephanssonO,RybackiE. Rock fracture toughness testing in Mode Ⅱ—punch-through shear test[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(6):755-769.
61 ZhouY X,XiaK,LiX B,et al.Suggested methods for determining the dynamic strength parameters and mode-Ⅰ fracture toughness of rock materials[J].International Journal of Rock Mechanics and Mining Sciences,2012,49(1):105-112.
Outlines

/