img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search

Rock-burst Proneness Prediction Based on Improved RS-TOPSIS Model

  • Kuang WANG ,
  • Xibing LI ,
  • Chunde MA ,
  • Helong GU
Expand
  • 1. School of Resource and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2. Center for Advanced Study,Central South University,Changsha 410083,Hunan,China

Received date: 2017-12-31

  Revised date: 2018-03-12

  Online published: 2019-03-19

Abstract

In view of the present situation that the weight determination of the prediction model in rock-burst proneness is insufficient,which leads to the low accuracy of the model,it is not accurate to use the single rough set algebraic view or information view to determine the weight.In order to predict the rock-burst proneness more accurately,the optimal weight was determined according to the algebraic view and information view in the rough set theory.Because the ideal point range of no rock-burst and violent rock-burst is too large,the relationship between rock-burst proneness and evaluation index was corrected and the ideal point matrix of rock-burst grade was established.Half of the interval length of light rock-burst and medium rock-burst was taken as the corresponding interval length of no rock-burst and violent rock-burst,the upper limit and the lower limit were set respectively for the ideal point matrix.The “approximate ideal point” and “interval” indexes were used to optimize the ideal point.Brittleness coefficient,stress strength coefficient and elastic energy index were selected to construct attribute set according to the occurrence conditions of rock-burst.Taking 20 rock-burst cases as the training and testing samples,using the improved rough set method and the modified rock-burst intensity ideal point method to establish the improved RS-TOPSIS model of rock-burst proneness prediction.The model was applied to predict the rock-burst proneness of the Linglong gold mine et al.The results show that the prediction accuracy of the improved sample reaches 95%,which is a certain improvement from the accuracy of 80%.The model can easily and quickly predict the rock-burst proneness,and the prediction accuracy is more accurate.The model has a good effect on predicting the rock-burst proneness of the actual project,provides a more accurate method for predicting the rock-burst proneness of the underground engineering,and the predicted results tallies with the actual situation.The prediction model of rock burst proneness has certain practical value and good application prospects.

Cite this article

Kuang WANG , Xibing LI , Chunde MA , Helong GU . Rock-burst Proneness Prediction Based on Improved RS-TOPSIS Model[J]. Gold Science and Technology, 2019 , 27(1) : 80 -88 . DOI: 10.11872/j.issn.1005-2518.2019.01.080

References

1 许迎年,徐文胜,王元汉,等.岩爆模拟试验及岩爆机制研究[J].岩石力学与工程学报,2002,21(10):1462-1466.
1 XuYingnian,XuWensheng,WangYuanhan,et al.Simulation testing and mechanism studies on rockburst[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(10):1462-1466.
2 李夕兵.岩石动力学基础与应用[M].北京:科学出版社,2014:495-501.
2 LiXibing.Rock Dynamics Fundamentals and Application[M].Beijing:Science Press,2014:495-501.
3 蔡嗣经,张禄华,周文略.深井硬岩矿山岩爆预测研究[J].中国安全生产科学技术,2005,1(5):17-20.
3 CaiSijing,ZhangLuhua,ZhouWenlue.Research on prediction of rockburst in deep hard rock mines[J].Journal of Safety Science and Technology,2005,1(5):17-20.
4 王元汉,李卧东,李启光,等.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报,1998,17(5):493-501.
4 WangYuanhan,LiWodong,LiQiguang,et al.Method of fuzzy comprehensive evaluations for rockburst prediction[J].Chinese Journal of Rock Mechanics and Engineering,1998,17(5):493-501.
5 ParkK H,LeeJ G,OwatsiriwongA.Seepage force in a drained circular tunnel:An analytical approach[J].Canadian Geotechnical Journal,2008,45(3):432-436.
6 龚剑,胡乃联,崔翔,等.基于AHP-TOPSIS评判模型的岩爆倾向性预测[J].岩石力学与工程学报,2014,33(7):1442-1448.
6 GongJian,HuNailian,CuiXiang,et al.Rockburst tendency prediction based on AHP-TOPSIS evaluation model[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(7):1442-1448.
7 陈建宏,覃曹原,邓东升.基于AHP和物元TOPSIS法的层状岩体巷道冒顶风险评价[J].黄金科学技术,2017,25(1):55-60.
7 ChenJianhong,QinCaoyuan,DengDongsheng.Risk assessment of bedded rock roadway roof fall based on AHP and Matter-Element TOPSIS method[J].Gold Science and Technology,2017,25(1):55-60.
8 ChenH J,LiN H,NiD X,et al.Prediction of rockburst by artificial neural network[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(5):762-768.
9 杨涛,李国维.基于先验知识的岩爆预测研究[J].岩石力学与工程学报,2000,19(4):429-431.
9 YangTao,LiGuowei.Study on rockburst prediction method based on the prior knowledge[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(4):429-431.
10 宫凤强,李夕兵.岩爆发生和烈度分级预测的距离判别方法及应用[J].岩石力学与工程学报,2007,26(5):1012-1018.
10 GongFengqiang,LiXibing.A distance discriminant analysis method for prediction of possibility and classification of rockburst and its application[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(5):1012-1018.
11 王吉亮,陈剑平,杨静,等.岩爆等级判定的距离判别分析方法及应用[J].岩土力学,2009,30(7):2203-2208.
11 WangJiliang,ChenJianping,YangJing,et al.Method of distance discriminant analysis for determination of classification of rockburst[J].Rock and Soil Mechanics,2009,30(7):2203-2208.
12 史秀志,周健,董蕾,等.未确知测度模型在岩爆烈度分级预测中的应用[J].岩石力学与工程学报,2010,29(增1):2720-2726.
12 ShiXiuzhi,ZhouJian,DongLei,et al.Application of unascertained measurement model to prediction of classification of rock-burst intensity[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(Supp.1):2720-2726.
13 PawlakZ,Grzmala-BusseJ,SlowinskiR,et al.Rough sets[J].Communications of the ACM,1995,38(11):89-95.
14 石峰,娄臻亮,张永清,等.一种改进的粗糙集属性约简启发式算法[J].上海交通大学学报,2002,36(4):478-481.
14 ShiFeng,LouZhenliang,ZhangYongqing,et al.A modified heuristic algorithm of attribute reduction in rough set[J].Journal of Shanghai Jiaotong University,2002,36(4):478-481.
15 索中英,程嗣怡,袁修久,等.优势决策信息系统规则获取方法及应用[J].兵工学报,2015,36(3):539-545.
15 SuoZhongying,ChengSiyi,YuanXiujiu,et al.Rule acquisition method and application of dominance decision-making information system[J].Acta Armamentarii,2015,36(3):539-545.
16 徐玖平,吴巍.多属性决策的理论与方法[M].北京:清华大学出版社,2006:66-73.
16 XuJiuping,WuWei.Multiple Attribute Decision Making Theory and Methods[M].Beijing:Tsinghua University Press,2006:66-73.
17 王新民,樊彪,张德明,等.基于AHP和TOPSIS的充填方案综合评判优选[J].黄金科学技术,2016,24(5):1-6.
17 WangXinmin,FanBiao,ZhangDeming,et al.Syntheic judgement for filling scheme optimization based on AHP and TOPSIS methods[J].Gold Science and Technology,2016,24(5):1-6.
18 谢本贤,陈沅江,史秀志.深部岩体工程围岩质量评价的IRMR法研究[J].中南大学学报(自然科学版),2007,38(5):987-992.
18 XieBenxian,ChenYuanjiang,ShiXiuzhi.IRMR method for evaluation of surrounding rock quality in deep rock mass engineering[J].Journal of Central South University(Science and Technology),2007,38(5):987-992.
19 王新民,荣帅,赵茂阳,等.基于变权重理论和TOPSIS的尾砂浓密装置优选[J].黄金科学技术,2017,25(3):77-83.
19 WangXinmin,RongShuai,ZhaoMaoyang,et al.Concentration equipment optimization based on variable weight theory and TOPSIS[J].Gold Science and Technology,2017,25(3):77-83.
20 周科平,雷涛,胡建华.深部金属矿山RS-TOPSIS岩爆预测模型及其应用[J].岩石力学与工程学报,2013,32(增2):3705-3711.
20 ZhouKeping,LeiTao,HuJianhua.RS-TOPSIS model of rock-burst prediction in deep metal mines and its application[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(Supp.2):3705-3711.
Outlines

/