img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (4): 479-496.doi: 10.11872/j.issn.1005-2518.2020.04.050

• Mineral Exploration and Resource Evaluation • Previous Articles     Next Articles

Genetic Types and Prospecting Significance of Liumei Gold Deposit,Guigang,Guangxi Province,China

Gang CHEN1(),Maohong CHEN1(),Kezhong MA1,Rui GE2,Shenxiang GUO2,Qiqiang WU3,Qisheng YUAN4   

  1. 1.NLR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,Chinese Academy Geological Sciences,Beijing 100037,China
    2.School of Earth Science and Mineral Resources,China University of Geosciences(Beijing),Beijing 100083,China
    3.No. 6 Geological Team of Guangxi,Guigang 537100,Guangxi, China
    4.No. 273 Geological Team of Guangxi,Guigang 537100,Guangxi, China
  • Received:2020-03-03 Revised:2020-04-18 Online:2020-08-31 Published:2020-08-27
  • Contact: Maohong CHEN E-mail:cccg0105@163.com;mhchen666@163.com

Abstract:

Liumei gold deposit is located in the northeast of Dapingtianshan stock,Guigang,Guangxi Province.According to mineral composition and pulse cutting relation,the deposit hydrothermal activity process is divided into four stages:(1)quartz-pyrite stage;(2)pyrite arsenopyrite-quartz stage;(3)galena-sphalerite-chalcopyrite-tennantite-ankerite-quartz stage;(4)quartz-ankerite stage.The second stage as the main metal-logenic stage.The main gold carriers are arsenopyrite and pyrite. EPMA analysis shows that Au mainly exists in the form of “invisible” submicroscopic-supermicroscopic inclusion gold.Fluid inclusion test shows that the inclusions in quartz or calcite are mainly gas-liquid two-phase,the average temperature in the main metallogenic stage is about 181 ℃,the average salinity [w(NaCl)] is 9.36%,and the density is 0.946 g/cm3, indicating that the ore-forming fluid is low-temperature,low-salinity,low-density fluid.The hydrogen and oxygen isotopic composition (δD value between -73‰~-57‰,δ18OH2O value between 2.3‰~6.1‰) indicates that the ore-forming fluid may be related to the magmatic hydrothermal fluid and was mixed by meteoric precipitation in the later period.The value of the gold-bearing δ34S is between -0.8‰ and 0.5‰,indicating that the ore-forming material comes from magmatic rock.These features indicate that Liumei gold deposit is very different from typical carlin-type gold deposits,especially it is lack of characteristic of the low temperature carlin-type gold mineral combination (orpiment-realgar-cinnabar),but instead contain more base metals mineral galena-sphalerite-chalcopyrite),so it is closer to related to magmatic activities of distal low temperature hydrothermal deposit.Based on the spatial distribution characteristics of regional ore deposits and rock masses,the metallogenic model of Dapingtianshan magmatic hydrothermal system for porphyry gold and copper deposits (Longtoushan gold deposit),skarn-type silver lead and zinc deposits (Touzha Ag-Pb-Zn deposit) and distal low temperature hydrothermal gold deposits (Liumei gold deposit) is proposed.The model implies that there should be intermediate temperate hydrothermal vein and skarn type silver-lead-zinc deposits deep in Liumei gold deposit and in the direction of Dapingtianshan rock mass.The model of magmatic hydrothermal metallogenic system established in this paper has important guiding significance for similar ore deposits in Dayaoshan area.

Key words: magmatic hydrothermal metallogenic system, arsenopyrite, pyrite, invisible gold, distal low temperature magmatic-hydrothermal deposit, Liumei gold deposit, Guigang City,Guangxi

CLC Number: 

  • P618.51

Fig.1

Location diagram of Liumei gold deposit in Dayaoshan area[7]"

Fig.2

Geological map of the Dapingtianshan area[10]"

Fig.3

Geological sketch map of Liumei gold mining area(a) and profile map of No. 1 exploration line(b)(modified after Guangxi Geological and Mineral Resources Exploration and Development Co., Ltd.,2007)"

Fig.4

Sequence of mineral formation in Liumei gold deposit"

Table 1

Orebody characteristics of Liumei gold deposit"

矿体编号长度/m厚度/m产状金品位/(×10-6
最高最低平均
(20)-15452.4684°∠85°41.91.717.34
(20)-23282.9193°∠88°6.831.744.30
(20)-33253.13254°∠77°8.211.884.23
(20)-4750.5685°∠78°3.26-3.26
(20)-5302.53284°∠85°5.891.252.43
(20)-61301.7880°∠75°3.422.953.26
(20)-71230.85106°∠75°1.50-1.50
(20)-8950.89100°∠82°8.941.564.30

Fig.5

Characteristics of ore-bearing fracture zone in Liumei gold deposit"

Fig.6

Microstructure characteristics of gold ore in Liumei gold deposit"

Fig.7

EPMA point bitmap and characteristics of arsenopyrite and pyrite"

Table 2

EPMA analysis results of arsenopyrite"

样品特征样品编号元素含量/%w(S)/ w(As)
AsAuPbSbAgSSnFeCuZnTotal
自形毒砂LM13-1-843.6300.0460.1740022.88468033.334210.0190100.08791.226
LM13-1-943.140000.000947023.66006034.339100.0040.008101.14811.282
LM13-1-1042.6000.0250.0760.022720023.89940034.0000300.019100.64621.311
LM1-3-2-445.38000.1110.004733021.66721033.185690.0060100.35461.116
LM1-3-2-544.493000021.92732033.418240.0170.01599.87061.152
LM1-3-2-644.6530.0390.1650021.70468033.516930.0010100.07961.136
LM1-3-2-945.728000021.570170.00833.5918200.034100.93201.102
LM1-3-2-1045.4830.0970.10200.00221.65028033.2597800100.59411.112
LM1-2-1-845.24700.1180.0388130.01621.35940033.2970300100.07621.103
LM1-2-1-946.7170.0450.0890.017987021.78985033.0754200101.73421.090
LM1-2-1-1044.47500.1350.098453022.50380033.4342200.005100.65151.182
LM3-5-1-645.8790.0870.0720.0293470.00921.053910.02733.6044900.003100.76471.072
LM3-5-1-744.4630.060.0720.012307021.63743034.9173300.018101.17991.137
LM3-5-1-845.5150.0640.00900.00121.793800.01733.7715200101.17161.119
LM3-5-1-945.40600.1750.0284000.00122.27248033.957010.0160.015101.87111.146
LM12-1-144.9740.1650.0720.023667022.58896033.7752100.030101.62921.174
LM12-1-244.83000.10200.00422.438640.00133.6395600101.01481.170
LM12-1-344.35400.2030.0397600.00522.929180.00933.0253000.017100.58251.208
LM12-1-445.0770.0450.0930.079520022.69677033.5555800.015101.56191.176
LM12-1-544.6520.1630.01700.02322.46732034.4180800101.74001.176
LM12-2-645.0030.0600.030.015147022.64237033.4054800.002101.15791.176
LM12-2-745.7080.07000.049227021.52699033.2944700100.64841.100
LM12-2-846.3840.0500.0980.0198800.02121.192480.00133.9132100.034101.71371.068
LM12-2-945.0540.10400.0331330.00521.961930.05234.386370.0060.013101.61501.139
LM12-2-1042.5630.0100.110.0075730.01122.76699034.665720.0190100.15291.250
LM3-2-1-444.6660.1630.060021.65435034.096770.0240.007100.67111.133
LM3-2-1-544.4540.059000.02522.63138033.6791300.005100.85351.190
LM3-2-1-644.8000.09700021.980720.01634.1847100.049101.12741.146
LM3-2-1-745.1850.1530.13800.00821.65534033.963880.0020.003101.10821.120
他形毒砂LM11-1-341.1410.0820.1810.614387022.61841034.857950.0160.05299.56271.285
LM11-1-444.3260.00300.210160022.68984034.177870.0020101.40891.196
LM11-1-542.23100.1480.5594800.00321.14863034.955660099.04581.170

Fig.8

EPMA scanning images of pyrite and arsenopyrite"

Table 3

EPMA analysis results of pyrite"

样品特征样品编号测点元素含量/%
AsAuPbSbAgSSnFeCuZnTotal
粒状黄铁矿LM11-115.8690.1060.0640049.12803045.633460.0790100.8795
21.2980.0720.3570.0085200.01651.784290.01446.8773400100.4271
LM3-2-112.6250.0480.4320.0142000.00852.15242046.211920.0150.020101.5265
21.8130.0260.3500.004733052.54407045.8738300.020100.6316
32.7970.0430.4120.0236670.03452.176160.00146.2910600.015101.7929
LM1-3-214.44800.2270050.81034045.955910.0230101.4642
24.5020.0240.2550050.93495046.045810.0460101.8078
34.5160.0210.2970.005680049.71847045.807390.0120100.3775
73.8860.0050.2720.004733051.333520.01146.1386300.020101.6709
83.16300.4190.008520051.710330.00346.1435200101.4474
LM3-5-113.61100.2050.0009470.01351.02297046.297900.0620.018101.2308
22.8160.0110.3330051.63418047.077640.0180101.8898
33.7610.0180.2230050.869680.00846.6359900101.5157
42.6580.0720.3240.0085200.00451.54220046.540230.0070101.156
52.4570.0450.3520.0142000.02550.745060.01046.497240.0020100.1475
LM12-1-66.0830.0180.51000.00248.52177045.299290.0190100.4531
73.92200.2370050.783630.02146.4630400.011101.4377
83.89200.4640.001893050.75693045.684270.0460.017100.8621
92.6400.0180.2260050.80045046.740540.0100.025100.4600
104.10500.3180.009467049.69078045.852340.0180.021100.0146
LM12-217.19600.2850.007573047.49419045.311010.0060.012100.3118
24.33200.45600.00350.62638046.547070.0150101.9794
32.3890.0050.3350051.92297046.879290.0340101.5653
44.2260.0470.2660049.60078045.611960.044099.7957
53.9050.0230.2830050.31781046.665300.0250101.2191
环带LM13-114.9340.0830.2880.018933049.844070.01745.169330.0480.015100.4173
环带26.69400.2870.042600048.89265044.892800.0400.039100.8881
环带35.6720.0070.33200.00249.25858045.311010.0290100.6116
核部43.1640.0650.3030.0179870.01051.184180.02345.702840.0030.015100.488
核部50.0510.0420.06800.02053.46286046.550000.0140.059100.2669
核部60.1060.1030.2500053.450000.02145.757150.014099.70115
粒状黄铁矿75.7110.0390.3110.017987049.410890.01445.316870.0790.012100.9117
1-7号点位由边部到核部,再由核部到边部,4号点为核部LM1-2-114.5730.0180.1960.006627051.02891045.0444500100.8670
23.8950.010.3030051.06847045.4523800100.7288
33.3780.0640.2360051.32561045.6707100100.6743
43.73700.4080051.45022045.8315800.016101.4428
53.9350.0180.2090.000947051.366160.01745.858390.0200.021101.4455
63.6840.0710.3490050.925060.01145.531860.0050100.5769
73.7970.0260.36200.00151.533300.03245.8459500.022101.6192
1号点到10号点依次从边部到核部LM1-3-113.3970.1090.4250.0444930.00950.93693045.578740.0200.027100.5472
22.6380.0050.2140051.861650.01846.2080100100.9447
34.45700.1830050.32363045.676450.0400.008100.6881
44.0130.0390.4150050.558030.00245.242210.0190100.2882
53.4150.0070.3080050.70836046.122020.0090.010100.5794
64.6680.0290.0570.0312400.01749.35451045.602190.011099.7699
74.7210.0370.2830.017040051.22408044.3905600100.6727
80.08800.2150053.29077046.8235900100.4174
90.0650.0170.3540053.77341046.6526000100.8620
100.0310.0510.40500.01653.73088046.2646800100.4986

Fig.9

Petrographic characteristics of fluid inclusions"

Table 4

Statistics of fluid inclusion temperature data in Liumei gold deposit"

成矿阶段数量/组均一温度/℃平均盐度 [w(NaCl)]/%平均密度 /(g·cm-3)
范围均值
7233~24423414.750.888
66161~1981819.360.946
5126~1351294.150.993

Fig.10

Homogeneous temperature and salinity histogram of fluid inclusion in Liumei gold deposit"

Table 5

Hydrogen and oxygen isotopic compositions of Liumei gold deposit"

成矿期次样品编号样品 名称δ18OV-SMOWδ18OH2OδDH2O
Ⅱ阶段LMJK-2石英17.66.1-57
LMJK-3石英17.35.8-59
LMJK-6石英17.05.5-61
Ⅳ阶段LMJK-4石英14.22.7-71
LMJK-7石英13.82.3-73

Fig.11

Diagram of hydrogen and oxygen isotopic composition of Liumei gold deposit[20]"

Table 6

S isotope composition of arsenopyrite and pyrite in Liumei gold deposit"

成矿期次样号样品名称δ34SV-CDT/‰
Ⅱ阶段LM-1-3毒砂0.1
LM-3-1毒砂-0.1
LM-3-5毒砂0.2
LM-7毒砂0.3
LM-8毒砂-0.1
LM-9毒砂-0.2
LM-10毒砂0.3
LM-1-3-A黄铁矿-0.5
LM-3-1-A黄铁矿0.0
LM-7-A黄铁矿0.0
LM-8-A黄铁矿0.5
LM-9-A黄铁矿-0.8

Fig.12

Diagram of S isotope composition of Liumei gold deposit[12,26]"

Table 7

Comparison of characteristics between Liumei gold deposit and carlin type gold deposit"

矿床类型矿物组合元素组合金的赋存状态蚀变成矿流体物质来源资料来源
六梅金矿主要为黄铁矿和毒砂,次要为黄铜矿、方铅矿、闪锌矿和辉锑矿Au-As-Cu-Pb-Zn-Sb不可见金硅化、绢云母化,石英—铁白云石—绢云母脉均一温度范围集中于140~260 ℃。为中低温、低盐度、低密度流体。H-O同位素示踪流体来自于岩浆水和大气降水混合S同位素表明成矿物质来源于岩浆岩本文
卡林型金矿主要为黄铁矿和毒砂,次要为雌黄、雄黄、辉锑矿、辰砂、萤石和重晶石Au-As-Sb-Hg-Tl不可见金去碳酸化、硫化物化、硅化、泥化均一温度范围集中于220~320 ℃。为中低温、低盐度、低密度流体。H-O同位素示踪具有变质流体和盆地流体的性质S同位素示踪显示复杂的来源,也有显示岩浆来源的[29-34]

Fig.13

Model diagram of magmatic hydrothermal metallogenic system in Dapingtianshan"

1 邓军.桂东大瑶山地区铜金多金属成矿系列及成矿模式[J].矿产与地质,2013,27(1):8-11.
Deng Jun.Metallogenic series and metallogenic model of Cu-Au polymetallic deposits in Dayaoshan area of eastern Guangxi[J].Mineral Resources and Geology,2013,27(1) :8-11.
2 郭申祥.广西深泥田金矿载金矿物研究[J].矿床地质,2014,33(增1):679-680.
Guo Shenxiang.Study on gold-bearing minerals in Shennitian gold deposits,Guangxi[J].Mineral Deposits,2014,33(Supp.1):679-680.
3 叶荣,王勇,马丽红,等.广西贵港六梅金矿地球化学研究[J].现代地质,2012,26(5):1058-1064.
Ye Rong,Wang Yong,Ma Lihong,et al.Geochemical research on Liumei gold deposit in Guigang,Guangxi[J].Geoscience,2012,26(5):1058-1064.
4 贺战朋.广西贵港福六岭金矿床地质地球化学特征研究[D].北京:中国地质大学(北京),2010.
He Zhanpeng.The Study on Geological and Geochemical Characteristics of Fuliuling Au Ore-deposit in Guigang,Guangxi[D]. Beijing: China University of Geosciences(Beijing),2010.
5 崔常红.广西贵港福六岭金矿床地球化学研究[D].北京:中国地质大学(北京),2009.
Cui Changhong.A Study on Geochemistry of Fuliuling Au Ore-deposit in Guigang,Guangxi[D].Beijing:China Uni-versity of Geosciences(Beijing),2009.
6 韦子任,傅勇.广西贵港龙山金矿田的矿床成因分析[J].矿产与地质,2013,27(5):388-392.
Wei Ziren,Fu Yong.Genesis analysis of Longtoushan Au ore field in Guigang of Guangxi[J].Mineral Resources and Geology,2013,27(5):388-392.
7 陈懋弘,李忠阳,李青,等.初论广西大瑶山地区多期次花岗质岩浆活动与成矿系列[J].地学前缘,2015,22(2):41-53.
Chen Maohong,Li Zhongyang,Li Qing,et al.A prelimina study of multi-stage granitoids and related metallogenic series in Dayaoshan area of Guangxi,China[J].Earth Science Frontiers,2015,22(2):41-53.
8 广西壮族自治区地质矿产勘查开发局.广西壮族自治区区域地质志[M].北京:地质出版社,1985.
Guangxi Bureau of Geology and Mineral Prospecting and Exploitation.Regional Geology of Guangxi Zhuang Autonomous Region[M].Beijing:Geological Publishing House,1985.
9 杨明桂,梅勇文.钦—杭古板块结合带与成矿带的主要特征[J].华南地质与矿产,1997(3):52-59.
Yang Minggui,Mei Yongwen.Characteristics of geology and metatllization in the Qinzhou-Hangzhou paleoplate juncture[J].Geology and Mineral Resources of South China,1997(3):52-59.
10 陈懋弘,李忠阳,韦子任,等.广西贵港大平天山岩浆热液成矿系统[C]//第十三届全国矿床会议论文集.北京:中国地质学会,2016:45-46.
Chen Maohong,Li Zhongyang,Wei Ziren,et al.Magmatic hydrothermal mineralization system of the Dapingtianshan in Guigang,Guangxi[C]//Proceedings of the 13th National Conference on Mineral Deposits.Beijing:Geological Society of China,2016:45-46.
11 刘长坚,袁蒋辉,周荣幸.广西贵港六梅金矿床地质地球化学特征[J].金属矿山,2011,40(9):120-122.
Liu Changjian,Yuan Jianghui,Zhou Rongxing.Study on the geological characteristics of Liumei gold deposit in Guigang,Guangxi[J].Metal Mine,2011,40(9):120-122.
12 葛锐.广西贵港市头闸银铅锌矿床地质特征和成因研究[D].北京:中国地质大学(北京),2019.
Ge Rui.Geological Characteristics and the Genesis of Touzha Ag-Pb-Zn Deposit,Guigang,Guangxi[D]. Beijing:China University of Geosciences(Beijing),2019.
13 梁一鸿,张宏颖,秦亚,等.内蒙古十八倾壕金矿床的叠加成矿作用——来自黄铁矿组分特征的证据[J].吉林大学学报(地球科学版),2012,42(1):77-81.
Liang Yihong,Zhang Hongying,Qin Ya,et al.Multiple mineralization of Shibaqinghao gold deposit in Inner Mongolia:Evidences from the compositions of pyrite[J].Journal of Jilin University(Earth Science Edition),2012,42(1):77-81.
14 盛继福,李岩,范书义.大兴安岭中段铜多金属矿床矿物微量元素研究[J].矿床地质,1999(2):57-64.
Sheng Jifu,Li Yan,Fan Shuyi.A study of minor elements in minerals from polymetallic deposits in the central part of the Daxingan mountains[J].Mineral Deposits,1999(2):57-64.
15 陈懋弘,毛景文,陈振宇,等.滇黔桂“金三角”卡林型金矿含砷黄铁矿和毒砂的矿物学研究[J].矿床地质,2009,28(5):539-557.
Chen Maohong,Mao Jingwen,Chen Zhenyu,et al.Mineralogy of arsenian pyrites and arsenopytites of carlin-type gold deposits in Yunnan-Guizhou-Guangxi “golden triangle” area,southwestern China[J].Mineral Deposits,2009,28(5):539-557.
16 Potter R W I,Clynne M A,Brown D L.Freezing point depression of aqueous sodium chloride solutions[J].Economic Geology,1978,73:284-285.
17 刘斌,段光贤.NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987(4):345-352.
Liu Bin,Duan Guangxian.The density and isochoric formulae for NaCl-H2O fluid inclusions(salinity≤25WT%) and their applications[J].Acta Mineralogica Sinica,1987(4):345-352.
18 Clayton R N,O’Neil J R,Mayeda T K.Oxygen isotope exchange between quartz and water[J].Journal of Geophysical Research,1972,77(17):3057-3067.
19 O’Neil J R,Clayton R N,Mayeda T K.Oxygen isotope fractionation in divalent metal carbonates[J].The Journal of Chemical Physics,1969,51:5547-5558.
20 Taylor H P.The application of oxygen and hydrogen isotope studies to problem of hydrothermal alteration and ore deposition[J].Economic Geology,1974,69:843-883.
21 胡庆成,闫浩,吴春明.斑岩—浅成低温热液型Cu-Au矿H2O-Cl-S流体性质和演化方式对成矿的制约[J].地质论评,2014,60(3):601-610.
Hu Qingcheng,Yan Hao,Wu Chunming.Constrains of properties and evolution patterns of H2O-Cl-S fluid on forming of porphyry-epithermal Cu-Au deposit[J]. Geological Review,2014,60(3):601-610.
22 郑永飞.稳定同位素体系理论模式及其矿床地球化学应用[J].矿床地质,2001(1):57-70,85.
Zheng Yongfei.Theoretical modeling of stable isotope systems and its applications to geochemistry of hydrothermal ore deposits[J].Mineral Deposits,2001(1):57-70,85.
23 郑永飞,徐宝龙,周根陶.矿物稳定同位素地球化学研究[J].地学前缘,2000,7(2):299-320.
Zheng Yongfei,Xu Baolong,Zhou Gentao.Geochemical studies of stable isotopes in minerals[J].Earth Science Frontiers,2000,7(2):299-320.
24 Hoef S J.Stable Isotope Geochemistry[M].4th eds.Berlin:Springer-Verlag,1997.
25 Ohmoto H.Stable isotope geochemistry of ore deposit[J].Reviews in Mineralogy and Geochemistry,1986,16(1):491-559.
26 刘苏桥,陈懋弘,杨锋,等.广西金牙金矿毒砂Re-Os同位素测年和硫同位素示踪[J].桂林理工大学学报,2014,34(3):423-430.
Liu Suqiao,Chen Maohong,Yang Feng,et al.Re-Os dating and sulfur isotope tracing of arsenopyrites from Jinya gold deposit in Guangxi[J].Journal of Guilin University of Technology,2014,34(3):423-430.
27 王成辉.广西龙头山金矿区成矿模式及成矿预测[D].北京:中国地质科学院,2011.
Wang Chenghui.Metallogenic Model and Prognosis of the Longtoushan Gold Field,the Guangxi Zhuang Autonomous Region,China[D].Beijing:Chinese Academy of Geological Sciences,2011.
28 申硕果,叶荣,王勇.广西贵港六梅金矿原生晕及深部找矿[J].现代地质,2012,26(5):1086-1094.
Shen Shuoguo,Ye Rong,Wang Yong.The primary halo and deep prospection of Liumei gold deposit in Guigang,Guangxi[J].Geoscience,2012,26(5):1086-1094.
29 苏秀珠,黄志华,衷水平,等.卡林型金矿石中金的赋存状态分析新方法[J].岩矿测试,2013,32(3):474-482.
Su Xiuzhu,Huang Zhihua,Zhong Shuiping,et al.New analysis method for gold occurrence in carlin-type gold ore[J].Rock and Mineral Analysis,2013,32(3):474-482.
30 谢贤洋,冯定素,陈懋弘,等.贵州泥堡金矿床的流体包裹体和稳定同位素地球化学研究及其矿床成因意义[J].岩石学报,2016,32(11):3360-3376.
Xie Xianyang,Feng Dingsu,Chen Maohong,et al.Fluid inclusion and stable isotope geochemistry study of the Nibao gold deposit,Guizhou and insights into ore genesis[J].Acta Petrologica Sinica,2016,32(11):3360-3376.
31 张弘弢,苏文超,田建吉,等.贵州水银洞卡林型金矿床金的赋存状态初步研究[J].矿物学报,2008,28(1):17-24.
Zhang Hongtao,Su Wenchao,Tian Jianji,et al.The occurrence of gold at Shuiyindong carlin-type gold deposit,Guizhou[J].Acta Mineralogica Sinica,2008,28(1):17-24.
32 刘源,侯中健,李定武.我国卡林型金矿研究现状[J].四川地质学报,2013,33(2):132-136.
Liu Yuan,Hou Zhongjian,Li Dingwu.Present situation of research into carlin-type gold deposits in China[J]. Acta Geologica Sichuan,2013,33(2):132-136.
33 韦龙明,刘鸾玲.中国卡林型金矿床金的赋存状态研究[J].地质与勘探,1995,31(6):31-35.
Wei Longming,Liu Luanling.Gold occurrence state of carlin-type gold deposits in China[J].Geology and Exploration,1995,31(6):31-35.
34 郭申祥.广西荔浦深泥田金矿的地质特征与成因类型研究[D].北京:中国地质大学(北京),2017.
Guo Shenxiang.Geological Features and Genesis Type of Shennitian Gold Deposit in Lipu County,Guangxi Province[D]. Beijing:China University of Geosciences(Beijing),2017.
35 黄民智,陈伟十,李蔚铮,等.广西龙头山次火山—隐爆角砾岩型金矿床[J].地球学报,1999,20(1):39-46.
Huang Minzhi,Chen Weishi,Li Weizheng,et al.Longtoushan gold deposit of subvolcanic-cryptoexplosion breccia type,Guangxi[J].Acta Geoscientica,1999,20(1):39-46.
36 谢抡司,孙邦东.广西贵港市龙头山火山—次火山岩型金矿床地质特征[J].广西地质,1993,6(4):27-42.
Xie Lunsi,Sun Bangdong.Geologiacal characteristics of Mt.Longtoushan volcanic-subvolcanic gold deposit[J].Guangxi Geology,1993,6(4):27-42.
37 陈富文,李华芹,梅玉萍.广西龙头山斑岩型金矿成岩成矿锆石SHRIMP U-Pb年代学研究[J].地质学报,2008,82(7):921-926.
Chen Fuwen,Li Huaqin,Mei Yuping.Zircon shrimp U-Pb chronology of diagenetic mineralization of the Longtoushan porphyry gold orefield,Gui Country,Guangxi[J].Acta Geologica Sinica,2008,82(7):921-926.
38 Sillitoe R H,Bonham H F.Sediment-hosted gold deposits:Distal products of magmatic-hydrothermal systems[J].Geology,1990,18(12):157-161.
39 Sillitoe R H. Porphyry copper systems[J].Economic geology,2010,105(1):3-41.
40 Zhao P L,Yuan S D,Mao J W,et al.Constraints on the timing and genetic link of the large-scale accumulation of proximal W-Sn-Mo-Bi and distal Pb-Zn-Ag mineralization of the world-class Dongpo orefield,Nanling range,South China[J].Ore Geology Reviews,2017,95:140-1160.
[1] Zhen ZHANG, Shengyuan NING, Zengtian XU. Mineralogy of Gold-bearing Pyrite and Its Significance for Deep Prospecting in the Jiuqu Gold Deposit,Linglong Area,Jiaodong Peninsula [J]. Gold Science and Technology, 2020, 28(3): 328-336.
[2] Yumin CHEN, Huafeng ZHANG, Congying ZHANG, Huanlong HU, Zhaokun WANG, Qingdong ZENG, Hongrui FAN. Pyrite Typomorphic Characteristics:Implication for Deep Gold Mineralization in the Sanshandao Gold Deposit,Jiaodong Peninsula [J]. Gold Science and Technology, 2019, 27(5): 637-647.
[3] Wenqiang ZHAO,Chuanjin JIANG,Baobao SHI. Optimization Study on the Sulfur Separation Process for Cyanide Tailing [J]. Gold Science and Technology, 2019, 27(1): 129-136.
[4] Qingwei LUO,Baoguo WANG,Aiwen YI,Kechuan ZHANG,Ze PAN,Shengya ZHANG. Typomorphic Characters and Significance of Pyrite in a Greenstone Belt Type Gold Deposit in Tanzania [J]. Gold Science and Technology, 2019, 27(1): 15-24.
[5] Yanhua LIU,Guobao CHEN,Hongying YANG,Zhenan JIN,Gairong WANG. Research on Mechanical Activation Properties and Leaching Test of Arseno-pyrite [J]. Gold Science and Technology, 2018, 26(5): 669-676.
[6] Leilei ZHANG, Jing ZHANG, Qisong WANG, Liang CHEN, Xu’an CHEN. Characteristics of Pyrite from Huaishuping Gold Deposit in Xiong’ershan District and Its Geological Significance [J]. Gold Science and Technology, 2018, 26(4): 481-491.
[7] LI Jiafeng, YANG Hongying, TONG Linlin, JIN Zhenan, ZHANG Dengchao. Experimental Study on Bacterial Oxidation-Gold Extraction of Paodaoling Refractory Gold Concentrate [J]. Gold Science and Technology, 2018, 26(2): 248-253.
[8] PAN Haodan1,2,YANG Hongying,TONG Linlin,LI Chengzhuo,DU Shilin,HAN Xinyi,HAN Shuang. Effects of Initial pH on ASH-07 Bacterial Growth and Chalcopyrite Bio-leaching Process [J]. Gold Science and Technology, 2018, 26(1): 115-123.
[9] SONG Xuewen,ZHU Jiaqian,LUO Zengxin,CHEN Bo. Study on the Gold Flotation Technology and Process Mineralogy of a Cyanide Residue [J]. Gold Science and Technology, 2018, 26(1): 89-97.
[10] QIU Xuemin,CHEN Guobao,ZHANG Qin,YANG Hongying. Experimental Study on Flotation Recovery of Valuable Metals from Ultrafine Cyanide Tailing Containing High Grade Lead and Zinc [J]. Gold Science and Technology, 2017, 25(6): 61-67.
[11] WANG Xiaoqing,YANG Xingke,RUI Huichao. The Crystal Form Typomorphism of Pyrite and Its Variation Regularity and Prospecting Significance in Daiwangshan Gold Deposit, Inner Mongolia [J]. Gold Science and Technology, 2017, 25(5): 39-46.
[12] SHI Guiming,ZHAO Jieming,WU Caibin,HE Shuichun. Research on the Beneficiation Tests of Mafic Igneous Rock Type Gold Deposit in Sichuan Province [J]. Gold Science and Technology, 2016, 24(6): 96-101.
[13] LIU Chunbo,ZHANG Shugen,HUANG Chaowen,LIU Xuan,MO Jinglong,LI Kailin. Genetic Mineralogical Characteristics of Pyrite in Boka Gold Deposit from Dongchuan Area,Yunnan Province [J]. Gold Science and Technology, 2016, 24(5): 40-47.
[14] WANG Yongliang,LV Cuicui,XIAO Li,DING Jian,FU Guoyan,YE Shufeng. [J]. Gold Science and Technology, 2016, 24(4): 144-148.
[15] TIAN Xiangsheng,DI Pengfei,LIU Dongxiao,WANG Jianfei,HE Guangwu. Study on the Occurrence of Native Gold in the Jiagantan Gold Deposit,Gansu Province [J]. Gold Science and Technology, 2016, 24(3): 40-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry[J]. J4, 2010, 18(3): 68 -71 .
[2] JIANG Qi, WANG Rong-Chao. [J]. J4, 2010, 18(4): 37 -40 .
[3] LIU Shu-Lin, SU Jian-Hua. [J]. J4, 2010, 18(4): 71 -74 .
[4] . [J]. J4, 2010, 18(4): 82 .
[5] LI Chu-Fang, XU Yong-An, CHAO Yin-Yin, WANG Mei-Juan, ZHANG Dai, LIU Jun, SUN Liang-Liang. Looking for Strata Bound Type Gold Deposit in Liaodong Metallogenic Belt[J]. J4, 2010, 18(3): 59 -62 .
[6] WANG Da-Beng, SONG Bing-Jian, HUI Ku-Meng. The Application of High Power IP Method for Searching Concealed Metallic Mine in Beishuiquan,Liaoning Province[J]. J4, 2010, 18(3): 76 -78 .
[7] FU Xing. [J]. J4, 2010, 18(4): 54 -57 .
[8] YI Cun-Chang, CANG En-Guang. [J]. J4, 2010, 18(4): 58 -61 .
[9] LIU Jin-Feng, LIU Mo-Jiang, LI Ding-Kun, LI Tian-Dong. [J]. J4, 2010, 18(4): 80 -81 .
[10] CHEN Li-Zi, CAO Dong-Hong, YANG De-Mei. Element Geochemical Characteristics of Guloushan Ore Section in Jinlongshan Gold Mine,Shaanxi Province[J]. J4, 2011, 19(1): 28 -33 .