img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (1): 32-41.doi: 10.11872/j.issn.1005-2518.2020.01.052

• Mining Technology and Mine Management • Previous Articles     Next Articles

Two Dimensional Evaluation Model of Goaf Stability Based on Variable Weight Contact Cloud

Hongwei DENG(),Weiyou ZHANG,Songtao YU,Yuxu GAO   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan, China
  • Received:2019-05-20 Revised:2019-10-18 Online:2020-02-29 Published:2020-02-26

Abstract:

The instability of the goaf poses serious threat to mine safety,and its stability is affected by many uncertain factors.Therefore,it is very important to evaluate the stability of the goaf.Many factors affect the result in the evaluation process,for instance,many ambiguity and randomness information exist in the evaluation of the goaf stability,the evaluation index interval normally distributed,dynamic combination of different evaluation index affect the weight values,and the inconsistency of the indicator level.In order to solve these problems,a two-dimensional evaluation model of goaf stability based on variable-weighted cloud was established.On the basis of comprehensive consider the actual situation of the goaf and related research results,the stability evaluation system and grading standards of the goaf were established.The digital characteristics of the contact cloud of each evaluation index belonging to different levels were calculated respectively,and then the contact cloud maps were generated by using the contact cloud generator and Rstudio software.Substituting the measured values of the sample indicators into the contact cloud model to calculate the degree of certainty of the contact cloud.After that,the subjective weight and objective weight were calculated by using the analytic hierarchy process and the entropy weight method respectively.Considering the advantages and disadvantages of the subjective and objective weighting methods,the game theory was used to fuse these two empowerment methods to obtain the optimized comprehensive weight.Considering that comprehensive weights calculated by game theory were constant weight,which could not reflect the influence of the index value on the weight,the variable weight theory was used to change the weight to obtain the variable weight,so as to better display the effect of dynamic change of the index value on evaluation result.The comprehensive determination degree of the goaf was then obtained by calculating the certainty degree of measured index value belongs to each contact level cloud and the final variable weight.After that,the stability level of the gob was determined according to the principle of maximum membership degree.In order to solve the problem of inconsistent index level attribution,fuzzy entropy was introduced as the second dimension evaluation auxiliary parameter to characterize the stability complexity of the goaf.The model was applied to engineering practice and compared with traditional cloud model and matter-element extension model,the evaluation results are basically the same.The results show that the stability evaluation model of the goaf is scientific and reasonable,and it provides a new idea for the stability evaluation of goaf and the stability evaluation of similar projects.

Key words: goaf stability, variable weight theory, contact cloud, combined weight, certainty, fuzzy entropy

CLC Number: 

  • TD853

Fig.1

Flow chart of evaluation model"

Table 1

Classification criteria for goaf stability evaluation indicators"

分组评价指标Ⅳ级Ⅲ级Ⅱ级Ⅰ级
定性指标评分值[0,25)[25,50)[50,75)[75,100]

岩体构造C1

(效益型)

块夹泥、泥夹块结构镶嵌、层状碎裂和碎裂结构层状和板状结构整体、块状和菱块状结构

地质构造C2

(效益型)

断层贯穿围岩和矿体褶皱影响大或断层部分切割褶皱对采空区影响小无断层、褶皱构造

水文状况C3

(效益型)

采空区内存在大量涌水情况采空区内存在的地下水水量很大采空区内存在的地下水水量较少采空区内不存在地下水

工程布置C4

(效益型)

运输、采准、切割布置极不合理,不考虑空区稳定性运输、采准、切割布置不合理,很少考虑空区稳定性运输、采准、切割布置较合理,考虑到空区稳定性运输、采准、切割布置合理,充分考虑空区稳定性

爆破扰动影响C5

(效益型)

爆破扰动对采空区影响很大爆破扰动对采空区影响较大爆破扰动对采空区影响一般爆破扰动对采空区没有影响

相邻空区分布C6

(效益型)

影响范围内采空区数量很多,且集中分布影响范围内采空区数量多,但分布较分散影响范围内采空区数量较少影响范围内无采空区

支护情况C7

(效益型)

无支护支护不合理支护较合理支护合理
定量指标岩石抗压强度C8/MPa(效益型)0~5050~100100~200>200
岩石质量指标C9/%(效益型)0~4040~5050~60>60
顶板暴露面积C10/m2(成本型)>2 7001 200~2 700800~1 2000~800

跨度C11/m

(成本型)

>12080~12040~800~40

埋藏深度C12/m

(成本型)

>350300~350250~3000~250

Fig.2

Contact cloud diagram of each evaluation indicator belongs to the the goaf stability level"

Table 2

Measured values of goaf stability evaluation indicators"

采空区编号评价指标实测值
C1C2C3C4C5C6C7C8C9C10C11C12
14045355545407083471 121100300
250655560455575914897365325
310151020251555894793679330
46545507040556087451 10470275
53035454045506077431 04588330
66555806065607586561 03476255
78085907590658583421 05782290
86065557055655085441 15678275
945503050404535765190785300
103530354045405071481 03271345

Table 3

Determination of the four stability levels of each indicator in the goaf 1"

确定度采空区稳定性评价指标
C1C2C3C4C5C6C7C8C9C10C11C12
0.01010.26680.070300.26680.01010.01010.004700.017800
0.97640.78440.97410.23190.78440.97640.97640.93420.89960.77610.03150.5001
0.07030.23190.01010.78440.23190.07030.07030.23930.13930.399810.5001
0000.00030000000.03150

Table 4

Assessment of goaf stability level"

采空区编号综合确定度本文方法云模型[4]物元可拓法
10.07520.89590.30190.0001Ⅱ(模糊性较高)
20.01880.34910.69840.0996Ⅲ(模糊性较高)
30.53770.18730.19510.0026Ⅰ(模糊性高)
40.04270.51670.58710.0677Ⅲ(模糊性高)
50.14410.69550.38420.0851Ⅲ(模糊性高)
60.01310.12720.60660.3015Ⅲ(模糊性高)
70.00060.12060.22650.6711Ⅳ(模糊性较高)
80.00420.36210.74690.0925Ⅲ(模糊性较高)
90.11050.83190.23010.0144Ⅱ(模糊性较高)
100.08100.87600.23010.0144Ⅱ(模糊性较高)
1 汪伟,罗周全,熊立新,等.基于改进物元可拓模型的采空区稳定性评价[J].安全与环境学报,2015,15(1):21-25.
Wang Wei,Luo Zhouquan,Xiong Lixin,et al. Research of goaf stability evaluation based on improved matter-element extension model[J]. Journal of Safety and Environment,2015,15(1):21-25.
2 王新民,柯愈贤,鄢德波,等.基于熵权法和物元分析的采空区危险性评价研究[J].中国安全科学学报,2012,22(6):71-78.
Wang Xinmin,Ke Yuxian,Yan Debo,et al.Underground goaf risk evaluation based on entropy weight and matter element analysis[J].China Safety Science Journal,2012,22(6):71-78.
3 王正帅,刘冰晶,邓喀中.老采空区稳定性的模糊可拓评价模型[J].地下空间与工程学报,2016,12(2):553-559.
Wang Zhengshuai,Liu Bingjing,Deng Kazhong.Fuzzy extension assessment model of old goaf stability[J].Chinese Journal of Underground Space and Engineering,2016,12(2):553-559.
4 刘浪,陈忠强.模糊集对分析在矿山采空区稳定性评价中的应用[J].中南大学学报(自然科学版),2015,46(7):2665-2672.
Liu Lang,Chen Zhongqiang.Application of fuzzy set pair in stability evaluation of mining goaf[J].Journal of Central South University(Science and Technology),2015,46(7):2665-2672.
5 Hu J H,Shang J L,Zhou K P,et al.Hazard degree identification of goafs based on scale effect of structure by RS-TOPSIS method[J].Journal of Central South University,2015,22(2):684-692.
6 邓高,杨珊.基于组合预测与变精度粗糙模糊集的采空区稳定性评价[J].黄金科学技术,2017,25(3):98-107.
Deng Gao,Yang Shan.Stability evaluation of goafs based on combined forecasting and variable precision rough fuzzy set[J].Gold Science and Technology,2017,25(3):98-107.
7 Hu Y X,Li X B.Bayes discriminant analysis method to identify risky of complicated goaf in mines and its application[J]. Transactions of the Nonferrous Metals Society of China,2012,22(2):425-431.
8 赵国彦,梁伟章,洪昌寿.采空区稳定性的改进云模型二维评判[J].中国安全科学学报,2015,25(10):102-108.
Zhao Guoyan,Liang Weizhang,Hong Changshou.Improved cloud model for two dimensional stability evaluation of goaf[J].China Safety Science Journal,2015,25(10):102-108.
9 高峰,高宇旭,周科平.基于RES-云模型的采空区稳定性评价研究[J].灾害学,2019,34(1):17-21,26.
Gao Feng,Gao Yuxu,Zhou Keping.Goaf stability evaluation based on RES-cloud model and analysis[J].Journal of Catastrophology,2019,34(1):17-21,26.
10 胡建华,习智琴,周科平.深部采空区尺寸效应的危险度正态云辨识模型[J].中国安全科学学报,2016,26(10):70-75.
Hu Jianhua,Xi Zhiqin,Zhou Keping.Normal cloud model for identifying hazard degree of deep goaf size effect[J].China Safety Science Journal,2016,26(10):70-75.
11 Hu J H,Ning Y L,Zhang X C,et al.Risk factor forecast based on neural network and grey relational analysis on physical dimension effect of mine goafs[J].Journal of Central South Universtiy(Science and Technology),2012,43(10):3982-3988.
12 李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20.
Li Deyi,Meng Haijun,Shi Xuemei.Membership clouds and membership cloud generators[J].Journal of Computer Research and Development,1995,32(6):15-20.
13 汪明武,朱其坤,赵奎元,等.基于有限区间联系云的围岩稳定性评价模型[J].岩土力学,2016,37(增1):140-144,165.
Wang Mingwu,Zhu Qikun,Zhao Kuiyuan,et al.A novel cloud model coupled with connection number based on finite intervals for evaluation of surrounding rock stability[J]. Rock and Soil Mechanics,2016,37(Supp.1):140-144,165.
14 汪明武,金菊良.联系数理论与应用[M].北京:科学出版社,2017.
Wang Mingwu,Jin Juliang.Contact Number Theory and Application[M]. Beijing:Science Press,2017.
15 汪培庄.模糊集与随机集落影[M].北京:北京师范大学出版社,1985.
Wang Peizhuang.Fuzzy Sets and Random Sets[M].Beijing:Beijing Normal University Press,1985.
16 李洪兴.因素空间理论与知识表示的数学框架(Ⅷ)——变权综合原理[J].模糊系统与数学,1995(3):1-9.
Li Hongxing.The mathematical framework of factor space theory and knowledge representation(Ⅷ)—The principle of variable weight synthesis[J]. Fuzzy Systems and Mathematics,1995(3):1-9.
17 李德清,李洪兴.状态变权向量的性质与构造[J].北京师范大学学报(自然科学版),2002,38(4):455-461.
Li Deqing,Li Hongxing.The properties and construction of state variable weight vectors[J].Journal of Beijing Normal University(Natural Science),2002,38(4):455-461.
18 费良军,王锦辉,王光社,等.基于改进熵权-G1-博弈论法的灌区运行状况综合评价[J].排灌机械工程学报,2015,33(10):895-900.
Fei Liangjun,Wang Jinhui,Wang Guangshe,et al.Comprehensive evaluation of irrigation district operational status based on improved entropy weight-G1-game theory method[J].Journal of Drainage and Irrigation Machinery Engineering,2015,33(10):895-900.
19 李德清,李洪兴.变权决策中变权效果分析与状态变权向量的确定[J].控制与决策,2004,19(11):1241-1245.
Li Deqing,Li Hongxing.Analysis of variable weights effect and selection of appropriate state variable weights vector in decision making[J].Control and Decision,2004,19(11):1241-1245.
20 Sun P B,Liu Y T,Qiu X Z,et al.Hybrid multiple attribute group decision-making for power system restoration[C]//2014 International Conference on Power System Technology.New York:IEEE,2014:14833185.
21 杨哲,杨侃,刘朗,等.组合赋权模糊熵—灰云聚类二维河流健康评价[J].华中科技大学学报(自然科学版),2018,46(5):90-94.
Yang Zhe,Yang Kan,Liu Lang,et al.Two dimensional river health evaluation based on fuzzy entropy-gray cloud clustering and combination weighting method[J]. Huazhong University of Science and Technology(Natural Science Edition),2018,46(5):90-94.
[1] Qinli ZHANG,Yufei ZHAO,Shuai RONG,Qian KANG. Optimization of Gently Inclined Thin Vein Mining Method Based on Variable Weight Theory and TOPSIS [J]. Gold Science and Technology, 2019, 27(6): 844-850.
[2] Rendong HUANG,Zanzan LIU,Zezheng YAN. Research on the Safety of Deep Foundation Pit Based on Finite Cloud Model [J]. Gold Science and Technology, 2019, 27(1): 72-79.
[3] Minggui ZHENG,Zhiliang HU. Study on Environmental Risk Evaluation of Overseas Mining Investment [J]. Gold Science and Technology, 2018, 26(5): 596-604.
[4] Huan LI,Junhua MING,Xiaofeng SHI. Cleaner Production Assessments of Zinc Smelting Enterprise Based on Game Theory and Fuzzy Comprehensive Evaluation [J]. Gold Science and Technology, 2018, 26(5): 635-646.
[5] KANG Qian,ZHANG Qinli,ZHANG Chuxuan,PU Chengzhi,JIANG Fuliang. Application of Ideal Point Method in Mining Stope Structural Parameters Optimization [J]. Gold Science and Technology, 2018, 26(1): 25-30.
[6] ZHAO Bin,LI Xiaobei,DAI Xingguo,WANG Xinmin,ZHANG Deming. Uncertainty Measurement Analysis of Slope Stability Based on Variable Weight Theory [J]. Gold Science and Technology, 2016, 24(6): 90-95.
[7] LUO Yonghong,ZHANG Xiangyu,WEI Zhenzhou,TAO Jinfang,QIN Huiping,CHEN Man,LIN Lingyu. Uncertainty Evaluation on Determination of Gold in Gold Ore by Atomic Absorption Spectrophotometry after Activated Carbon Adsorption [J]. Gold Science and Technology, 2015, 23(5): 77-82.
[8] LIU Shuliang,LIU Jiufen,ZHANG Rusheng. Uncertainty Evaluation for the Determination of Gold in Gold Ore by Flame Atomic Absorption Spectrometry [J]. Gold Science and Technology, 2013, 21(2): 40-44.
[9] ZHANG Fengxia,LIU Huafeng,WANG Yue,YAN Fei. Evaluation of Uncertainty in Measurement of Copper,Iron and Zinc in Golden Jewelry by ICP-AES Method [J]. Gold Science and Technology, 2012, 20(5): 67-70.
[10] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry [J]. J4, 2010, 18(3): 68-71.
[11] NIE Feng-Lian, WANG Li-Hua, ZHANG Shu-Ji, CHEN Xue, CHEN Tie-Sheng. Uncertainty Evaluation for Preparation of the Gold Standard Solution [J]. J4, 2009, 17(3): 56-59.
[12] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation for the Determination ofGold inOre by Activated Carbon Enrichment and Separation-iodometry [J]. J4, 2009, 17(2): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAN Jie, QIN Ze-Li, XIE Wen-Bing, CA Bang-Yong. [J]. J4, 2010, 18(4): 22 -26 .
[2] SONG He-Min, FENG Chi-Li, DING Xian-Hua. Geological-Geochemical Charicteristics and Prospecting Direction of Jiaojiekou Mining Area, North Part of Taihang Mountain[J]. J4, 2010, 18(3): 54 -58 .
[3] LI Chu-Fang, XU Yong-An, CHAO Yin-Yin, WANG Mei-Juan, ZHANG Dai, LIU Jun, SUN Liang-Liang. Looking for Strata Bound Type Gold Deposit in Liaodong Metallogenic Belt[J]. J4, 2010, 18(3): 59 -62 .
[4] HU Qin-Xia, LI Jian-Zhong, YU Guang-Meng, XIE Yan-Fang, ZHANG Ku-Xiao. Discussion on Gold Ore Point of Bailongjiang Metallogenic Belt[J]. J4, 2010, 18(3): 51 -53 .
[5] CHEN Hua-Dun. [J]. J4, 2010, 18(4): 50 -53 .
[6] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry[J]. J4, 2010, 18(3): 68 -71 .
[7] SU Jian-Hua, LIU Shu-Lin. Study of Gold Extraction from Tail Solution with High Acid Content and Low Concentration[J]. J4, 2010, 18(3): 72 -75 .
[8] LIU Qing-Guang, GAO Hai-Feng, HUANG Suo-Yang. The Application of PDA in Geology Department of Jiaojia Gold Mine[J]. J4, 2010, 18(3): 79 -82 .
[9] HUANG Jun, WU Jiafu, LU RuKuai , XIA Liyuan. [J]. J4, 2010, 18(4): 1 -5 .
[10] LIU Xin-Hui, LIU Jia-Jun, CHEN Cai-Hua. [J]. J4, 2010, 18(4): 6 -11 .