img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (1): 1-11.doi: 10.11872/j.issn.1005-2518.2020.01.128

• Mineral Exploration and Resource Evaluation •     Next Articles

Geochemical Characteristics,Zircon U-Pb Age and Geochronological Significance of Diabase in Heiniu’ao Gold Deposit,Baoshan Block,Western Yunnan

Ying LUO1(),Yingxiang LU2,Xuelong LIU1(),Shunrong XUE2,Shuaishuai WANG1,Zhenhuan LI1,Changzhen ZHANG1,Jianhang CHEN1   

  1. 1.Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    2.Key Laboratory of Sanjiang Mineralization and Resource Exploration and Utilization,Ministry of Land and Resources,Kunming 650051,Yunnan,China
  • Received:2019-07-08 Revised:2019-10-08 Online:2020-02-29 Published:2020-02-26
  • Contact: Xuelong LIU E-mail:52938746@qq.com;xuelongliu@foxmail.com

Abstract:

The special geotectonic location of Baoshan block makes it undergo a series of Tethys evolutionary activities with frequent regional tectonic-magmatic activities.Granite is developed from Paleozoic to Cenozoic.In addition,a large number of basic intrusive rocks occurring as dikes and dikes are also developed in the region.Previous research and analysis of granite in the region is relatively systematic,but the study and analysis of basic rocks in the region,especially basic dikes commonly developed in typical polymetallic ore areas in the ore concentration area,is relatively weak.Previous studies and analyses only the chronology of diabase and its relationship with mineralization in the Hetaoping lead-zinc polymetallic ore area.The study and analysis of the petrogenesis of basic rocks is almost blank.Therefore,the diabase porphyrite in typical boreholes of Heiniu’ao gold deposit has been systematically analyzed in terms of petrochemical characteristics and zircon U-Pb dating in LA-ICP-MS in situ.The main elements of Heiniu’ao diabase porphyry are characterized by low SiO2,low TiO2,high Al2O3,low MgO,high FeOT and low K2O,belonging to the shoshonite series.Trace and rare earth elements are characterized by enrichment of light rare earth elements (LREE) and large ion lithophile elements (LILE) and depletion of high field strength elements(HFSE),suggesting that their source areas are lithospheric mantle.The content of Cr and Ni in the rocks is obviously lower than that in the original basalt magma,indicating that the magma may have undergone the crystallization separation of olivine and pyroxene.The obvious negative anomalies of Nb and Ta suggest that they were contaminated by crustal materials during the process of magma emplacement.The tectonic environment is consistent with the tectonic background of Jinchanghe diabase and Hetaoping diabase,which are intraplate extensional environments.The diagenetic age of the diabase porphyrite obtained in the mining area is (212.0±4.9) Ma,which is similar to the diagenetic age of the Hetaoping diabase obtained by predecessors (195.0±5.3) Ma,and that of the Jinchanghe diabase (217.3±5.8) Ma are all Late Triassic.It shows that the basic dikes in the area are the products of the Triassic magmatic activities.The closure of the Triassic Paleo-Tethyan Ocean resulted in the collision between Baoshan and Simao blocks,which resulted in extensional activities in Baoshan block.The basalt magma originating from the mantle emplaced upward along the weak tectonic zone to form diabase porphyrite of this time limit,and experienced crystallization differentiation and crustal contamination during the process of magma emplacement.

Key words: diabase porphyrite, zircon U-Pb dating, geochemistry, Late-Triassic, intraplate extensional environment, Western Yunnan

CLC Number: 

  • P618.51

Fig.1

Simplified geological map of Heiniu’ao gold deposit(modified after Yang[21])"

Fig.2

Geological profile map of No.18 line in Heiniu’ao gold deposit"

Fig.3

Hand specimen (a) and micrographs (b) of diabase in Heiniu’ao gold deposit"

Table 1

Characteristics of major elements and trace elements of diabase in Heiniu’ao gold deposit"

样品编号岩性主量元素及含量/%
SiO2TiO2Al2O3Fe2O3TMgOCaONa2OK2OMnOP2O5LOITotal
HNA7-02-1辉绿玢岩49.061.4315.5911.454.967.191.882.730.180.164.8599.48
HNA7-02-2辉绿玢岩48.971.4215.6611.464.937.211.852.750.180.174.8599.45
HNA7-09辉绿玢岩48.951.4715.9311.244.706.492.102.700.170.165.5599.46
HNA7-10辉绿玢岩48.921.4515.8011.334.976.992.052.310.180.165.3099.46
JCH辉绿岩48.431.7114.8811.786.599.632.980.080.300.203.38100.21
HTP辉绿岩48.621.3414.2211.635.749.151.772.990.480.143.3899.46
样品编号岩性微量元素及含量/(×10-6)
RbBaThUTaNbSrZrHfCrCuPb
HNA7-02-1辉绿玢岩112.06973.410.601.0512.338968.12.2374.51306.48
HNA7-02-2辉绿玢岩109.06733.280.630.9211.737966.32.0675.01286.07
HNA7-09辉绿玢岩117.08853.141.170.9911.933159.91.8965.01247.26
HNA7-10辉绿玢岩87.305293.390.580.8912.033860.11.9871.71045.50
JCH辉绿岩1.34293.540.681.6028.439749.11.75153.0334.00
HTP辉绿岩90.055103.360.620.7110.9342237.351.88176.0129.3522.16
样品编号岩性微量元素及含量/(×10-6)
ZnNiCoLaCePrNdSmEuGdTbDy
HNA7-02-1辉绿玢岩105.045.441.016.833.14.4319.14.741.384.751.026.04
HNA7-02-2辉绿玢岩100.044.839.716.032.34.2118.54.471.324.620.995.89
HNA7-09辉绿玢岩100.038.936.915.631.54.1317.94.421.264.440.955.79
HNA7-10辉绿玢岩93.841.738.816.532.94.3218.74.561.154.580.945.88
JCH辉绿岩124.058.238.619.738.14.8017.54.411.524.250.874.78
HTP辉绿岩205.867.646.915.132.84.0918.94.921.445.560.935.92
样品编号岩性微量元素及含量/(×10-6)

LREE/

HREE

(La/Yb)NδEu
HoErTmYbLuYΣREELREEHREE
HNA7-02-1辉绿玢岩1.222.950.583.220.4032.599.7379.5520.183.943.740.88
HNA7-02-2辉绿玢岩1.192.910.563.090.3930.496.4476.819.643.913.710.88
HNA7-09辉绿玢岩1.162.840.543.020.3830.593.9374.8119.123.913.710.86
HNA7-10辉绿玢岩1.212.930.553.020.3831.997.6278.1319.494.013.920.76
JCH辉绿岩0.952.670.412.250.2925.1102.4585.9916.465.226.281.06
HTP辉绿岩1.113.070.402.350.3229.496.8977.2319.663.930.84

Fig.4

TAS diagram (a) and SiO2-K2O diagram (b) of diabase in Heiniu’ao gold deposit"

Fig.5

Chondrite-normalized rare earth distribution pattern diagram (a) and primitive mantle-normalized trace element spider diagram(b) for diabase in Heiniu’ao gold deposit(base map modified after Sun,et al[29])"

Table 2

LA-ICP-MS zircon U-Pb age of diabase porphyrite in Heiniu’ao gold deposit"

分析点元素含量/(×10-6Th/U比值年龄
总PbThU207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
HNA7-06-0361.46368.65397.440.930.05620.00300.26520.01400.03430.0007461.16115.73238.8711.27217.684.23
HNA7-06-0445.00252.52324.240.780.05280.00370.24240.01440.03430.0007320.43162.02220.4011.81217.614.55
HNA7-06-08119.74693.92759.570.910.05350.00270.24970.01220.03400.0006350.06114.80226.359.90215.733.82
HNA7-06-1128.19145.00805.000.180.04820.00210.22230.00990.03300.0004200.0868.46203.798.22209.222.46
HNA7-06-1327.4763.90770 .000.080.04900.00250.22330.01090.03300.0005146.38113.87204.659.09209.532.88

Fig.6

Cathodoluminescence(CL) images of zircon with U-Pb analyzed from the diabase in Heiniu’ao gold deposit"

Fig.7

Concordia plot of zircon 206Pb/238U-207Pb/235U of diabase in Heiniu’ao gold deposit"

Fig.8

Discrimination of basalt tectonic environment FeOT-MgO-Al2O3 diagram (a)(base map modified after Pearce, et al[38]) and Th/Hf-Ta/Hf diagram for discrimination of basalt tectonic environment(b)(base map modified after Wang,et al[39])"

1 Metcalfe I.Tectonic framework and Phanerozoic evolution of Sundaland[J].Gondwana Research,2011,19(1):3-21.
2 Metcalfe I.Gondwana dispersion and Asian accretion:Tectonic and paleogeographic evolution of eastern Tethys[J].Journal of Asian Earth Sciences,2013,66:1-33.
3 Deng J,Wang Q F,Li G J,et al.Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China[J].Gondwana Research,2014,26(2):419-437.
4 Li G J,Wang Q F,Huang Y H,et al.Discovery of Hadean-Mesoarchean crustal materials in the northern Sibumasu block and its significance for Gondwana reconstruction[J].Precambrian Research,2015,271:118-137.
5 Li G J,Wang Q F,Huang Y H,et al.Petrogenesis of middle Ordovician peraluminous granites in the Baoshan block:Implications for the Early Paleozoic tectonic evolution along East Gondwana[J].Lithos,2016,245:76-92.
6 Wang C M,Bagas L,Lu Y J,et al.Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping[J]. Earth-Science Reviews,2016,156:39-65.
7 Chen F K,Li X H,Wang X L,et al.Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt,southwestern China[J].International Journal of Earth Sciences,2007,96(6):1179-1194.
8 Liu S,Hu R Z,Gao S,et al.U-Pb zircon,geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic Ⅰ-type granite from the Tengchong-Baoshan block,western Yunnan Province,SW China[J].Journal of Asian Earth Sciences,2009,36(2/3):168-182.
9 董美玲,董国臣,莫宣学,等.滇西保山地块早古生代花岗岩类的年代学、地球化学及意义[J].岩石学报,2012,28(5):1453-1464.
Dong Meiling,Dong Guochen,Mo Xuanxue,et al.Geochronology and geochemistry of the Early Palaeozoic granitoids in Baoshan block,western Yunnan and their implications[J].Acta Petrologica Sinica,2012,28(5):1453-1464.
10 Ye L,Gao W,Cheng Z T,et al.LA-ICP-MS Zircon U-Pb geochronology and petrology of the Muchang alkali granite,Zhenkang County,western Yunnan Province,China[J].Acta Geologica Sinica,2010,84(6):1488-1499.
11 聂飞,董国臣,莫宣学,等.滇西昌宁—孟连带三叠纪花岗岩地球化学、年代学及其意义[J].岩石学报,2012,28(5):1465-1476.
Nie Fei,Dong Guochen,Mo Xuanxue,et al.Geochemistry,zircon U-Pb chronology of the Triassic granites in the Changning-Menglian suture zone and their implications[J].Acta Petrologica Sinica,2012,28(5):1465-1476.
12 王晓林,李维科, 黄亮,等.滇西龙陵地区三叠纪蚌东花岗岩体LA-ICP-MS锆石 U-Pb年龄、地球化学特征及其构造意义[J].地质通报,2018,37(11):2071-2078.
Wang Xiaolin,Li Weike,Huang Liang,et al.LA-ICP-MS zircon U-Pb age,geochemical characteristics and tectonic implications of the Bangdong granite intrusions in Longling area,western Yunnan Province[J].Geological Bulletin of China,2018,37(11):2071-2078.
13 陶琰,胡瑞忠,朱飞霖,等.云南保山核桃坪铅锌矿成矿年龄及动力学背景分析[J].岩石学报,2010,26(6):1760-1772.
Tao Yan,Hu Ruizhong,Zhu Feilin,et al.Oreforming age and the geodynamic background of the Hetaoping lead zinc deposit in Baoshan,Yunnan[J].Acta Petrologica Sinica,2010,26(6):1760-1772.
14 董美玲,董国臣,莫宣学,等.滇西保山地块中—新生代岩浆作用及其构造意义[J].岩石学报,2013,29(11):3901-3913.
Dong Meiling,Dong Guochen,Mo Xuanxue,et al.The Mesozoic-Cenozoic magmatism in Baoshan Block,Western Yunnan and its tectonic significance[J].Acta Petrologica Sinica,2013,29(11):3901-3913.
15 禹丽,李龚健,王庆飞,等.保山地块北部晚白垩世岩浆岩成因及其构造指示:全岩地球化学、锆石U-Pb年代学和 Hf同位素制约[J] .岩石学报,2014,30(9):2709-2724.
Yu Li,Li Gongjian,Wang Qingfei,et al.Petrogenesis and tectonic significance of the Late Cretaceous magmatism in the northern part of the Baoshan block:Constraints from bulk geochemistry,zircon U-Pb geochronology and Hf isotopic compositions[J].Acta Petrologica Sinica,2014,30(9):2709-2724.
16 孙柏东,王晓林,黄亮,等.保山地块漕涧复式岩体晚白垩世花岗岩地球化学特征及锆石U-Pb年代学意义[J].地质通报,2018,37(11):2099-2111.
Sun Baidong,Wang Xiaolin,Huang Liang,et al.Geochemical characteristics of Late Cretaceous granites and zircon U-Pb chronological significance of the Caojian complex granites in the Baoshan block[J].Geological Bulletin of China,2018,37(11):2099-2111.
17 黄静宁,陈永清,Zhai X M,等.滇西保山地块双脉地晚始新世过铝质花岗岩:锆石SHRIMP U-Pb定年,地球化学和成因[J].中国科学(地球科学),2011,41(4):452-467.
Huang Jingning,Chen Yongqing,Zhai X M,et al.Zircon SHRIMP U-Pb geochronology,geochemistry,and petrogenesis of the Upper Eocene Shuangmaidi peraluminous granite in Baoshan Block,western Yunnan Terrain,southwestern China[J].Scientia Sinica Terrae,2011,41(4):452-467.
18 韩艳伟.滇西保山核桃坪铅锌矿V1矿体成矿流体演化的历史分析[D].云南:昆明理工大学,2010:20-40.
Han Yanwei.A Historical Analysis of the Evolution of Ore-forming Fluids in V1 Orebody of Hetaoping Lead-Zinc Deposit,Baoshan,Western Yunnan[D].Yunnan:Kunming University of Science and Technology,2010:20-40.
19 王建荣,薛传东,黄河远,等.滇西保山核桃坪铅锌矿床辉绿岩地质特征、岩相学及意义[J].科学技术与工程,2013,13(17):4884-4889.
Wang Jianrong,Xue Chuandong,Huang Heyuan,et al.Geological and petrography characteristics of the diabase in Hetaoping Pb-Zn deposit,Baoshan County,western Yunnan Province and its implications[J].Science Technology and Engineering,2013,13(17):4884-4889.
20 刘绍昌,刘星,靳纪娟,等.云南保山核桃坪铅锌矿床角闪石和绿帘石族矿物特征[J].河南科学,2014,32(10):2089-2094.
Liu Shaochang,Liu Xing,Jin Jijuan,et al.The mineralogy of amphibole group and epidote group from Hetaoping lead-zinc polymetallic deposit in Baoshan,Yunnan[J].Henan Science,2014,32(10):2089-2094.
21 杨怀. 云南保山黑牛凹金矿地质特征及成因研究[D].北京:中国地质大学,2017:18.
Yang Huai. The Research on Geological Characteristics and Genesis of the Heiniu’ao Gold Deposits in Baoshan, Yunnan[D]. Beijing: China University of Geosciences,2017:18.
22 Hu Z C,Gao S,Liu Y S,et al.Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J].Journal of Analytical Atomic Spectrometry,2008,23:1093-1101.
23 Hu Z C,Liu Y S,Gao S,et al.A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2012,78:50-57.
24 Liu Y S,Hu Z C,Gao S,et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,2008,257:34-43.
25 Liu Y S,Gao S,Hu Z C,et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths[J].Journal of Petrology,2010,51:537-571.
26 Ludwig K R.ISOPLOT 3.0:A Geochronological Toolkit for Microsoft Excel[Z].Berkeley:Berkeley Geochronology Center Special Publication,2003.
27 Hoskin P W O,Black L P.Metamorphic zircon formation by solid-state recrystallization of photolith igneous zircon[J].Journal of Metamorphic Geology,2000,18(4):423-439.
28 吴元保,郑永飞.锆石成因矿物学及其对U-Pb年龄解释的制约[J].科学通报,2004,49(6):1589-1604.
Wu Yuanbao,Zheng Yongfei.A study on the minerageny and U-Pb dating explained of zircons[J].Chinese Science Bulletin,2004,49(16):1589-1604.
29 Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[C]//Saunders A D,Norry M J.Magmatism in Ocean Basins.London:Geological Society of London Special Publications,1989,42(1):313-345.
30 Weaver B L.The origin of ocean island basalt end-member compositions:Trace element and isotopic constraints[J].Earth and Planetary Science Letters,1991,104(2/3/4):381-397.
31 赵振华,包志伟,张伯友. 湘南中生代玄武岩类地球化学特征[C].中国科学(D辑),1998,28(增):7-14.
Zhao Zhenhua,Bao Zhiwei,Zhang Boyou.Geochemical characteristics of the Mesozoic basalts from south Hunan Province[C].Science in China(Series D),1998,28(Supp.):7-14.
32 Sklyarov E V,Gladkochub D P,Mazukabzov A M,et al.Neoproterozoic mafic dike swarms of the Sharyzhalgai metamorphic massif,southern Siberian craton[J].Precambrian Research,2003,122(1/2/3/4):359.
33 Frey F A,Green D H.Integrated models of basalt Petrogenesis:A study of quartitholeiites to olivine melilities from southeastern Australia utilizing geochemical and experiment petrological data[J].Journal of Petrology,1978,19:463-513.
34 江思宏,聂凤军,胡朋,等.藏南基性岩墙群的地球化学特征[J].地质学报,2007,81(1):60-71.
Jiang Sihong,Nie Fengjun,Hu Peng,et al.Geochemical characteristics of the mafic dyke swarms in south Tibet[J]. Acta Geologica Sinica,2007,81(1):60-71.
35 孙书勤,汪云亮,张成江.玄武岩类岩石大地构造环境的Th、Nb、Zr判别[J].地质评论,2003,49(1):40-47.
Sun Shuqin,Wang Yunliang,Zhang Chengjiang.Discrimination of the tectonic settings of basalts by Th,Nb and Zr[J].Geological Review,2003,49(1):40-47.
36 刘学龙,杨富成,张昌振,等.滇西北雪鸡坪斑岩型铜矿构造特征与成矿作用研究[J].黄金科学技术,2018,26(4):473-480.
Liu Xuelong,Yang Fucheng,Zhang Changzhen,et al.Structural characteristics and mineralization of Xuejiping plrphyry copper deposit in northwest Yunnan[J].Gold Science and Technology,2018,26(4):473-480.
37 莫宣学,潘桂棠.从特提斯到青藏高原形成:构造—岩浆事件的约束[J].地学前缘,2006,13(6):43-51.
Mo Xuanxue,Pan Guitang.From the Tethys to the formation of the Qinghai Tibet Plateau:Constrained by tectonic magmatic events[J].Earth Science Frontiers,2006,13(6):43-51.
38 Pearce T H,Gorman B E,Birkett T C.The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks[J].Earth and Planetary Science Letters,1977,36(1):121-132.
39 汪云亮,张成江,修淑芝.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J].岩石学报,2001,17(3):413-421.
Wang Yunliang,Zhang Chengjiang,Shuzhi Xiu.Th /Hf-Ta/Hf identification of tectonic setting of basalts[J].Acta Petrologica Sinica,2001,17(3):413-421.
[1] Ouxiang WEI, Dayu ZHANG, Jinsong LIU, Xuefeng CHEN, Longxiang YE, Hua JIANG, Xiang QIAN, Taofa ZHOU. Geochronology and Genesis of Taxia Granodiorite Intrusion in the Northwest Jiangnan Proterozoic Terrane [J]. Gold Science and Technology, 2018, 26(6): 689-705.
[2] Jing CHEN,Jichun HU,Yongzhuo LU,Shiying LU,Shulin WANG,Beibei XU. Geochronology,Geochemical Characteristics of Molybdenum Ore-bearing Syenogranite from Xiaozhaohuo Area in East Kunlun and Its Geological Significance [J]. Gold Science and Technology, 2018, 26(4): 465-472.
[3] CHEN Lifei,FU Wei,HUANG Xianglin,CHEN Hongyi,TONG Ruiling. Analysis on Geochemical Characteristics and Regional Tectonic Background of Mafic Rocks in Yangxu Area,Western Guangxi [J]. Gold Science and Technology, 2017, 25(5): 30-38.
[4] WU Jiafu,WANG Xiang,HUANG Jun. Comprehensive Prospecting Effect and Significance of Huashugou Gold Deposit in Inner Mongolia [J]. Gold Science and Technology, 2016, 24(6): 32-38.
[5] YIN Xijun,YIN Shilin,ZHENG Lijuan. Geochemistry Characteristic of Element and Evaluation of Prospecting Poten-tiality in Jinchang Deposit Daxushan Mining Right Area in Heilongjiang Province [J]. Gold Science and Technology, 2015, 23(6): 23-29.
[6] YANG Mu,XIE Xianbin,PENG Yong,CHEN Kan,CHEN Lei,ZOU Haiyang. Reconstruction of Protoliths of Matamorphic Rocks and Tectonic Setting in Sokor District,Malaysia Peninsula [J]. Gold Science and Technology, 2015, 23(2): 1-7.
[7] XIN Xiaojun,FENG Yongxue,WU Yamou,LIU Xia,JI Shengjun. Discussion on the Geological Characteristics and Prospects of Mawu Gold Deposit in Gansu Province [J]. Gold Science and Technology, 2015, 23(1): 40-45.
[8] ZHANG Zhijun,GONG Qingjie,LIU Chenxi,SHEN Liusheng. Study on Geology,Geochemistry and Its Metallogenic Significance of Baimaya Gold Deposit [J]. Gold Science and Technology, 2014, 22(6): 18-25.
[9] WANG Jianzhong,QIAN Zhuangzhi,JIANG Chao,XU Gang,LIU Shiqiang,TANG Wenheng. Geochemical Characteristics and its Tectonic Significance of Quartz Diorite in Baimashan Gold Field,Southern Qinling Mountains [J]. Gold Science and Technology, 2014, 22(5): 30-38.
[10] SUN Baohua,NIU Shuyin,WANG Xingcun,SUN Aiqun,DING Peichao,LI Qiangfeng,HOU Jianglong. Primary Halo Characteristics of the Orebody in Dahu Gold Deposit,Xiaoqinling Area [J]. Gold Science and Technology, 2014, 22(4): 55-60.
[11] ZHANG Shuji,LIU Xinhui,YANG Shuanhai. Geological Characteristics of No.106 Vein Orebody  in Jinlongshan Gold Mine,South Qinling Mountains [J]. Gold Science and Technology, 2014, 22(3): 7-14.
[12] ZHANG Yunqiang,CHEN Haiyan,LIU Yinglong,ZHANG Liguo,ZHANG Jianzhen,DONG Hongkai,LIU Guang,LIU Silin. LA-ICP-MS Zircon,U-Pb Age and Geochemical Characteristics of Quartz Monzonite of Shouwangfen Copper Mine in North Hebei Province [J]. Gold Science and Technology, 2014, 22(3): 23-29.
[13] ZHANG Zhiguo,HU Junhai,SONG Guibin. Application of Large Ore Deposit Geochemical Quantitative Evaluation Method in Shabaosi and Baoxinggou Gold Deposit [J]. Gold Science and Technology, 2014, 22(1): 40-46.
[14] TIAN Yuebin,ZHANG Tao,YANG Qingyun,ZHAO Bo. The Factor Analysis and Its Application to the Geochemical Subareas based on the Stream Sediment Survey:Taking Northwestern Zhejiang Province for Instance [J]. Gold Science and Technology, 2013, 21(3): 48-54.
[15] LI Yiyang,LUO Xianrong,LI Shizhu,TANG Zhixiang. The Prospecting Study of Using Geology and Geochemistry in Yantao Gold Mine,Guangxi Province [J]. Gold Science and Technology, 2012, 20(6): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MA Fengshan,GUO Jie,LI Kepeng,LU Rong,ZHANG Hongxun,LI Wei. Monitoring and Research for the Deformation of Mine Backfill and Roof Surrounding Rock when Exploiting Sanshandao Seabed Gold Mine[J]. Gold Science and Technology, 2016, 24(4): 66 -72 .
[2] QU Hui, WANG Baiyi, WANG Jianmin, LI Chenglu, XU Guozhan, WANG Zhuo. Application of Soil Geochemical Survey in the Exploration of Yongxin Gold Deposit and Its Prospecting Effect[J]. Gold Science and Technology, 2018, 26(2): 143 -152 .
[3] XIE Minxiong,LI Zhengyao,LIN Shuyong,CHI Xiaopeng,QI Chuanduo. Research on the Technology Innovation and Application of Improving Performance of Grinding System in Concentrator [J]. Gold Science and Technology, 2012, 20(6): 65 -68 .
[4] WANG Wenjun,XIAO Qingfei,KANG Huaibin,ZHAN Xinshun,WU Qiming,XIAO Hun. Optimization Experiment Research on the Ball Charge Characteristics of MQG3660 Grate-type Ball Mill in a Gold Mine[J]. Gold Science and Technology, 2016, 24(2): 90 -94 .
[5] HU Xiaokun,SONG Huichang,LIU Qing. [J]. Gold Science and Technology, 2016, 24(5): 94 -101 .
[6] YANG Mingcai, SHENG Jianlong, YE Zuyang, DONG Shu. Analysis of Sensitivity Factors of Open-pit Mine Slope Stability and Impact Based on FlAC3D[J]. Gold Science and Technology, 2018, 26(2): 179 -186 .
[7] YANG Chao, SHI Xiuzhi. Mine Safety Standardization Grade Evaluation Based on Fisher Discriminant Model[J]. Gold Science and Technology, 2018, 26(2): 187 -194 .
[8] YANG Longwei, YANG Xingke, GAO Yaning, HE Hujun, CHU Nana, ZHANG Zhengmin. Three-dimensional Model and Location Prediction of Changgou Gold Deposit in Northern Hanyin of South Qinling Mountains[J]. Gold Science and Technology, 2018, 26(3): 270 -278 .
[9] Huanlong HU,Hongrui FAN. The Effect of Water/Rock Interaction for the Gold Fineness of Jiaojia Gold Deposit[J]. Gold Science and Technology, 2018, 26(5): 559 -569 .
[10] Xiushan QIN,Hui CAO,Ye YUAN,Zhijie ZHENG. Method for Repairing Collapse of Orepass Wall Based on Double-Controlled Tension Cable Bundles[J]. Gold Science and Technology, 2018, 26(6): 744 -749 .