img

Wechat

Adv. Search

Gold Science and Technology ›› 2018, Vol. 26 ›› Issue (2): 195-202.doi: 10.11872/j.issn.1005-2518.2018.02.195

Previous Articles     Next Articles

Research on Evaluation Index of Red Sandstone Instability Under Different Stress

LIN Ge 1,GONG Fengqiang 1,2   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China;2.Center for Advanced Study,Central South University,Changsha 410083,Hunan,China
  • Received:2016-09-05 Revised:2016-12-20 Online:2018-04-30 Published:2018-05-25

Abstract:

In order to study the relationship between peak stress,peak strain and the stability state of red sandstone under different stress dimensions,uniaxial compression test under one-dimensional stress,variable angle plate shear test and direct shear test under two dimensional stress,three axis compression test under three dimensional stress were carried out.The results show that:the coefficient variation of peak stress and peak strain are 6.61% and 9.36% respectively in uniaxial compression test.The average coefficient variation of peak stress and peak strain are 5.69% and 19.81% respectively in variable angle plate shear test.In the direct shear test,the average coefficient variation of peak stress and peak strain are 4.32% and 14.74% respectively.The average coefficient variation of peak stress and peak strain are 6.03% and 7.44% respectively in the three axial compression tests.Research shows:when sandstone is under the one-dimensional or three-dimensional stress state,the peak stress and peak strain can be used as indexes to judge whether the red sandstone is unstable, but the peak stress is more reliable than the peak strain as the evaluation index.When the sandstone is under the two-dimensional stress state,only the peak stress can be used as an index to judge whether the red sandstone is unstable or not.The above research rule is not only important to judge whether the rock is unstable in laboratory test,but also provides a theoretical basis for judging whether rockmass is in safety state in geotechnical engineering.

Key words: uniaxial compression test, variable angle plate shear test, direct shear test, three axis compression test, peak stress, peak strain, coefficient variation

CLC Number: 

  • TD853
 
[1] 李夕兵,姚金蕊,宫凤强.硬岩金属矿山深部开采中的动力学问题[J].中国有色金属学报,2011,21(10):2551-2563.
 Li Xibing,Yao Jinrui,Gong Fengqiang.Dynamic problems in deep exploitation of hard rock metal mines[J].The Chinese Journal of Nonferrous Metals,2011,21(10):2551-2563.
[2] 李夕兵,周健,王少锋,等.深部固体资源开采评述与探索[J].中国有色金属学报,2017,27(6):1236-1262.
 Li Xibing,Zhou Jian,Wang Shaofeng,et al.Review and practice of deep mining for solid mineral resources[J].The Chinese Journal of Nonferrous Metals,2017,27(6):1236-1262.
[3] 谢和平,高峰,鞠杨.深部岩体力学研究与探索[J].岩石力学与工程学报,2015,34(11):2161-2178.
 Xie Heping,Gao Feng,Ju Yang.Research and development of rock mechanics in deep ground engineering[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2161-2178.
[4] 刘绍君,胡宪铭.南非金矿深部开采中的地压管理技术[J].中国矿山工程,2013,42(6):41-45.
 Liu Shaojun,Hu Xianming.Ground control techniques of gold mines deep mining in South Africa[J].China Mine Engineering,2013,42(6):41-45.
[5] 张子健,纪洪广,张月征,等.玲珑金矿深部开采岩爆分析[J].金属矿山,2015(6):134-138.
 Zhang Zijian,Ji Hongguang,Zhang Yuezheng,et al.Analysis of rock burst in deep mining of Linglong gold mine[J].Metal Mine,2015(6):134-138.
[6] 宫凤强,陆道辉,李夕兵,等.动力扰动下预静载硬岩断裂的增韧和减韧效应[J].岩石力学与工程学报,2014,33(9):1905-1915.
 Gong Fengqiang,Lu Daohui,Li Xibing,et al.Toughness increasing or decreasing effect of hard rock fracture with pre-static loading under dynamic disturbance[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(9):1905-1915.
[7] 蔡美峰,孔广亚,贾立宏.岩体工程系统失稳的能量突变判断准则及其应用[J].北京科技大学学报,1997,19(4):325-328.
 Cai Meifeng,Kong Guangya,Jia Lihong.Criterion of energy carastrophe for rock project system failure in underground engineering[J].Journal of University of Science and Technology Beijing,1997,19(4):325-328.
[8] 文兴,唐绍辉,闭理楚.多通道声发射监测系统在矿山安全开采中的应用[J].矿业研究与开发,2009,29(3):65-67.
 Wen Xing,Tang Shaohui,Bi Lichu.Application of multi-channel acoustic emission system in mining engineering[J].Mining Research and Development,2009,29(3):65-67.
[9] 尹贤刚,李庶林,唐海燕,等.岩石破坏声发射平静期及其分形特征研究[J].岩石力学与工程学报,2009,28(增2):3383-3390.
 Yin Xiangang,Li Shulin,Tang Haiyan,et al.Study on quiet period and its fractal characteristics of rock failure acoustic emission[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(Supp.2):3383-3390.
[10] 张勋,熊庆国,蒋贤成.矿山安全声发射实时监测系统的设计与实现[J].金属矿山,2015(7):119-122.
 Zhang Xun,Xiong Qingguo,Jiang Xiancheng.Design and implementation of acoustic emission real-time monitoring system for the mine safety[J].Metal Mine,2015(7):119-122.
[11] 李庶林.试论微震监测技术在地下工程中的应用[J].地下空间与工程学报,2009,5(1):122-128.
 Li Shulin.Discussion on microseismic monitoring technology and its applications to underground projects[J].Chinese Journal of Underground Space and Engineering,2009,5(1):122-128.
[12] 马天辉,唐春安,唐烈先,等.基于微震监测技术的岩爆预测机制研究[J].岩石力学与工程学报,2016,35(3):470-483.
 Ma Tianhui,Tang Chun’an,Tang Liexian,et al.Mechanism of rock burst forecasting based on micro-seismic monitoring technology[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(3):470-483.
[13] 邓志毅,张东胜,安里千.热探测法监测岩石应力变化的实验研究[J].中国矿业大学学报,2006,35(5):623-627.
 Deng Zhiyi,Zhang Dongsheng,An Liqian.Experimental of monitoring stress variation of rock using a thermal detection[J].Journal of China University of Mining & Technology,2006,35(5):623-627.
[14] 赵扬锋,潘一山,李国臻,等.岩石变形破裂过程中电荷感应信号的检测[J].防灾减灾工程学报,2010,30(3):252-256.
 Zhao Yangfeng,Pan Yishan,Li Guozhen,et al.Measuring of the charge-induced signal of rock during the deformation and fracture process[J].Journal of Disaster Prevention and Mitigation Engineering,2010,30(3):252-256.
[15] Nitson U.Electromagnetic emission accompanying fracture of quartz-bearing rocks[J].Geophysics Research Letters,1977,4(8):333-336.
[16] 邹凯,李雯.矿山岩爆及其监测技术综述[J].江西有色金属,1989(2):32-35.
 Zou Kai,Li Wen.Mine rock burst and its monitoring technology[J].Jiangxi Nonferrous Metals,1989(2):32-35.
[17] 杨永杰,陈绍杰.同种岩石强度离散性的实验技术研究[J].实验技术与管理,2005,22(1):51-53.
 Yang Yongjie,Chen Shaojie.Experimental study on strength dispersion of same rock[J].Experimental Technology and Management,2005,22(1):51-53.
[18] 赵文,曹平,章光.岩石力学[M].长沙:中南大学出版社,2010:22-31.
 Zhao Wen,Cao Ping,Zhang Guang.Rock Mechanics[M].Changsha:Central South University Press,2010:22-31.
[19] 中华人民共和国国土资源部.地质矿产行业标准:岩石物理力学性质试验规程 第18部分:岩石单轴抗压强度试验:DZ/T0276.18-2015[S].北京:中国标准出版社,2015.
 People’s Republic of China Ministry of Land and Resources.Geological and mineral industry standard: Testing regulations for physical and mechanical properties of rocks Eighteenth part:Uniaxial compressive strength test of rock DZ/T0276.18-2015[S].Beijing:China Standard Press,2015.
[20] 中华人民共和国国土资源部.地质矿产行业标准:岩石物理力学性质试验规程(第25部分):岩石抗剪强度试验:DZ/T0276.25-2015[S].北京:中国标准出版社,2015.
 People’s Republic of China Ministry of Land and Resources.Geological and mineral industry standard:Testing regulations for physical and mechanical properties of rocks The twenty-fifth part:Shear strength test of rock:DZ/T0276.25-2015[S].Beijing:China Standard Press,2015.
[21] 李庆辉,陈勉,金衍,等.含气页岩破坏模式及力学特性的试验研究[J].岩石力学与工程学报,2012,31(增2):3763-3771.
 Li Qinghui,Chen Mian,Jin Yan,et al.Experimental research on failure modes and mechanical behaviors of gas-bearing shear[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(Supp.2):3763-3771.
[22] 刘建锋,谢和平,徐进,等.循环荷载下岩石变形参数和阻尼参数探讨[J].岩石力学与工程学报,2012,31(4):770-777.
 Liu Jianfeng,Xie Heping,Xu Jin,et al.Discussion on deformation and damping parameters of rock under cyclic loading[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(4):770-777.
[23] 崔洁,江权,冯夏庭,等.岩石抗剪强度参数的理论概率分布形态研究[J].岩土力学,2015,36(5):1261-1274.
 Cui Jie,Jiang Quan,Feng Xiating,et al.Theoretical probability distribution of shear strength parameters for rock[J].Rock and Soil Mechanics,2015,36(5):1261-1274.
[1] WANG Xinmin, ZHAO Maoyang, RONG Shuai, WANG Hao, ZHANG Yunhai. Influence of APAM on Early Age Strength of Cemented Backfill Based on Unclassified Tailings [J]. Gold Science and Technology, 2018, 26(3): 305-311.
[2] HU Guiying, LIU Kewei, DU Xin, LI Xiaohan. Research on Smooth-cutting Method and Its Application in Tunnel Excavation [J]. Gold Science and Technology, 2018, 26(3): 349-356.
[3] HU Huarui, LI Xudong, CHEN Qingfa, GAO Feihong. Revised Classification Table of Underground Mining Method for Metallic Ore Deposits [J]. Gold Science and Technology, 2018, 26(3): 387-394.
[4] SHI Caixing, GUO Lijie, LI Wenchen, ZHANG Dan. Study on Filling Cementitious Materials Based on Lead-Zinc Smelting Slag and Its Application [J]. Gold Science and Technology, 2018, 26(2): 160-169.
[5] LIU Dingyi, WANG Liguan, CHEN Xin, ZHONG Deyun, XU Zhiqiang. Study on Multi Objective Optimization and Application of Medium and Long Term Plan for Underground Mine [J]. Gold Science and Technology, 2018, 26(2): 228-233.
[6] CAO Shirong,HAN Jianwen,LI Yongxin,WANG Xiaojun,FENG Xiao,ZHUO Yulong. Damage Analysis of Solid Waste Rock Cemented Filling Body Based on Acoustic Emission Probability Density Function [J]. Gold Science and Technology, 2017, 25(6): 92-98.
[7] LI Zongnan,GUO Lijie,YU Bin,SHI Caixing. Shearing Thinning Behavior of High Concentration Slurry Based on Bingham Model [J]. Gold Science and Technology, 2017, 25(4): 33-38.
[8] DING Jianfeng. Research on the Ore Bunker Treatment of a Gold Mine [J]. Gold Science and Technology, 2017, 25(4): 52-57.
[9] BAI Zhaoyang,WANG Guowei,ZHANG Peng,LIU Shuanping. Research on Pillaring Blasting Location Under Level Gob Group Conditions [J]. Gold Science and Technology, 2017, 25(4): 81-86.
[10] WANG Xinmin,RONG Shuai,ZHAO Maoyang,ZHANG Qinli . Concentration Equipment Optimization Based on Variable Weight Theory and TOPSIS [J]. Gold Science and Technology, 2017, 25(3): 77-83.
[11] XU Huaihao,LI Jinyou. Application Practice of Increasing Production and Reducing Consumption in Grinding System of Dayingezhuang Gold Mine [J]. Gold Science and Technology, 2017, 25(3): 116-120.
[12] LIU Zhixiang,GONG Yongchao,LI Xibing. Study on the Backfilling Material Properties Based on Fractal Theory and BP Neural Network [J]. Gold Science and Technology, 2017, 25(2): 38-44.
[13] HU Jianhua,YANG Chun,ZHOU Bingren,ZHOU Keping,ZHANG Shaoguo. Simulation of Fracture Propagation and Optimization of Parameters for Smooth Blasting of Coping in Roadway [J]. Gold Science and Technology, 2017, 25(2): 45-53.
[14] XIAO Weijing,CHEN Chen,LI Yongxin,WANG Xiaojun,CAO Shirong,HAN Jianwen. Creep Experiment and Model of Deep Limestone Under Step Loading [J]. Gold Science and Technology, 2017, 25(2): 76-82.
[15] JIA Mintao,WANG Qunfang,WU Lengjun. Research Status and Prospect of Thermal Environmental Control Technology Under Deep Mining [J]. Gold Science and Technology, 2017, 25(2): 83-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] BAO Zhen-Xiang. [J]. Gold Science and Technology, 1994, 2(4): 29 -35 .
[2] ZHANG Yuan, ZHANG Hong-Xi. [J]. J4, 2010, 18(4): 12 -16 .
[3] LI Bin, JU Hai-Xiang, YANG Mu, DU Gao-Feng, HUI Ji-Kang, WANG Tian-Guo. [J]. J4, 2010, 18(4): 17 -21 .
[4] YAN Jie, QIN Ze-Li, XIE Wen-Bing, CA Bang-Yong. [J]. J4, 2010, 18(4): 22 -26 .
[5] LIN An-Zhi, DIAO Yu-Suo, XIAO Zhen, QING Min, WEI Feng, JIU Zhen-Beng. [J]. J4, 2010, 18(4): 27 -32 .
[6] LIU Yuan-Hua, YANG Gui-Cai, ZHANG Lun, JI Jin-Zhong, LI Wen-Liang. Petrology and Geochemistry of Granites in Yangshan Ultra-large Gold Deposit,West Qinling[J]. J4, 2010, 18(6): 1 -7 .
[7] LIU Dong-Hai, LIU Xin-Hui. Research on the Characteristics of Pyrite and its Gold -bearing Properties of Zhaishang Oversized Gold Deposit in Western Qinling[J]. J4, 2010, 18(6): 8 -12 .
[8] HU Qin-Xia, CHEN Kai, CHEN Chao, ZHANG Ku-Xiao. Analysis on Geological Features and Metallogenic Regularities of Nacheng Silver Gold Deposit in Guangdong[J]. J4, 2011, 19(1): 16 -20 .
[9] XU Qing-Jun, XU Qing-Yuan, LU Ren-Jiang, SUN Jian, HUANG Shan, LIU Ji-Xin. Research on the Technology of Mining Complex Orebody Combined Shallow Hole Shrinkage and Deep Hole Blasting Method[J]. J4, 2011, 19(1): 49 -50 .
[10] PAN Guangming1,HU Lei, GU Xinjian. Technology for Recovery of Longshan Gold Antimony M ine′s Low Grade Remnant Orebody with Remained Old Workings[J]. J4, 2008, 16(1): 16 -18 .