img

Wechat

Adv. Search

Gold Science and Technology ›› 2023, Vol. 31 ›› Issue (2): 232-251.doi: 10.11872/j.issn.1005-2518.2023.02.124

Previous Articles     Next Articles

Composition Characteristics of Garnet in Xintianling Skarn-type Scheelite Deposit,South Hunan Province and Its Implications for the Tungsten Mineralization

Bo LI(),Shaohao ZOU(),Deru XU(),Xilian CHEN,Xuena WANG,Hua WANG   

  1. State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,Jiangxi,China
  • Received:2022-09-20 Revised:2022-12-11 Online:2023-04-30 Published:2023-04-27
  • Contact: Shaohao ZOU,Deru XU E-mail:leebo0813@foxmail.com;shaohaozou@hotmail.com;xuderu@gig.ac.cn

Abstract:

The Xintianling deposit is one of the largest skarn-type scheelite deposits in South China,and its mineralization has undergone complex magmatic and hydrothermal processes.Taking the skarn garnet in the Xintianling deposit as the research object,the U-Pb dating,in-situ major and trace element analysis of garnet were carried out by EPMA and LA-ICP-MS in-situ micro-area testing techniques.The U-Pb dating reveals that the age of ore-related garnet in Xintianling deposit is ca.(159.5±3.0)Ma,which is consistent with that of the fine-grained porphyritic biotite granite(164~157 Ma)of the Qitianling rock mass,indicating that the Xintianling tungsten mineraliztion is closely related to the Qitianling rock mass.Based on the mineral assemblages and backscattering images,it is determined that there are three generations of garnet in the Xintianling tungsten deposit.According to the structural characteristics of garnets in the backscattered images,the garnets in the Xintianling deposit can be divided into three generations,namely,the early stage dark garnet(Grt1),the middle stage garnet with obvious oscillation zone(Grt2) and the late stage bright garnet (Grt3).Among them,Grt2 can be divided into Grt2-1 with oscillatory zones and Grt2-2 with thick oscillatory zones.Grt1,Grt2-1and Grt3 show the left-skewed REE patterns with LREE depleted and HREE enrichment.Grt1 has an obvious negative Eu anomaly,Grt2-1 has a weak Eu negative anomaly,and Grt3 has a weak Eu negative anomaly.In contrast,Grt2-2 has a “hump-type” REE pattern with LREE enrichment and HREE depleted,and the weak Eu positive anomaly.From Grt1 to Grt3,the content of Mn in garnet showes a trend of first decreasing and then rising,and the W content in Grt3 is higher than Grt2 but lower than Grt1.These results suggest that the Xintianling deposit has experienced multiple hydrothermal processes,and the oxygen fugacity and temperature of the ore fluid first increas and then decreases,and the pressure pH value first decreases and then increases during the ore-forming processes.Combined with the variations of W content in garnet from different mineralization stages,it is considered that the mineralization of tungsten in the Xintianling deposit mainly occurs in the retrograde metamorphic stage,and undergoes the process of dissolution-reprecipitation in the late retrograde metamorphic stage.

Key words: Xintianling tungsten deposit, skarn, garnet, U-Pb dating of garnet, LA-ICP-MS, EPMA

CLC Number: 

  • P611

Fig.1

Schematic map of geotectonics of China and the location of the study area(a)(modified after Sun et al.,2017)and geological map of tungsten-tin deposits in southeast Hunan(b)(modified after Peng et al.,2006)"

Table 1

Dating results of the plutons and mineralization in Qitianling rock mass and Xintianling deposit"

岩体(矿床)名称岩性定年方法年龄/Ma文献来源
骑田岭花岗岩中粒黑云母二长花岗岩锆石U-Pb定年165.0±3.1章荣清,2015
骑田岭花岗岩细粒黑云母花岗岩锆石U-Pb定年164.0±0.6章荣清,2015
骑田岭花岗岩花岗斑岩锆石U-Pb定年147.5±0.5章荣清,2015
骑田岭花岗岩中粒斑状角闪石黑云母二长花岗岩锆石U-Pb定年167.5±1.7刘勇等,2011
骑田岭花岗岩中粒斑状角闪石黑云母二长花岗岩锆石U-Pb定年155.4±4.3刘勇等,2011
骑田岭花岗岩角闪石黑云母二长花岗岩锆石U-Pb定年163~160朱金初等,2009
骑田岭花岗岩黑云母花岗岩锆石U-Pb定年157~156朱金初等,2009
骑田岭花岗岩细粒(有时含斑)黑云母花岗岩锆石U-Pb定年150~146朱金初等,2009
骑田岭花岗岩角闪黑云母花岗岩黑云母40Ar-39Ar定年157.5±0.3毛景文等,2004
新田岭钨矿退化蚀变岩黑云母40Ar-39Ar定年157.1±0.2毛景文等,2004
新田岭钨矿退化蚀变岩辉钼矿Re-Os定年161.8±2.2章荣清,2015
新田岭钨矿石英脉辉钼矿Re-Os定年159.1±2.6袁顺达等,2012
新田岭钨矿石英脉石英流体包裹体Rb-Sr定年157.4±3.2蔡明海等,2008

Fig.2

Photographs of hand samples of skarn ore from Xintianling deposit"

Fig.3

Geological map of the Xintianling skarn-type scheelite deposit(modified after Zhang,2015)"

Fig.4

Textural and optical characteristics of the garnets and mineral paragenetic assemblage of the Xintianling deposit"

Table 2

Major elements analysis results of the garnet in Xintianling deposit by EPMA(%)"

测试点位岩石类型成分总计
MgOAl2O3SiO2TiO2CaOWO3FeOTMnONa2OSnO2MoO3
24a-1B-2-006(A6)Grt10.0114.6635.070.7233.23BDL10.742.77BDLBDL0.0297.22
25c-2B-1-003(A3)Grt10.019.0635.000.1432.95BDL18.002.47BDLBDLBDL97.63
25c-2B-1-005(A4)Grt10.0412.8334.740.6131.090.0513.194.240.01BDL0.0196.80
25c-2B-1-006(A6)Grt10.0310.4534.150.7031.60BDL16.433.69BDLBDLBDL97.04
33-4B-1-009(A5)Grt10.0514.3935.990.8632.69BDL11.352.950.03BDLBDL98.31
24a-1B-1-003(A3)Grt2-10.039.2633.720.6132.880.0717.682.370.01BDL0.0296.65
24a-1B-1-004(A4)Grt2-10.0311.9934.520.5232.71BDL14.422.740.04BDLBDL96.97
24a-1B-1-005(A5)Grt2-10.0611.5634.270.4028.59BDL15.716.030.02BDLBDL96.62
24a-1B-2-002(A2)Grt2-10.0311.4434.520.5233.080.0715.022.32BDLBDL0.0297.02
24a-1B-2-003(A3)Grt2-10.039.9734.030.5832.020.0917.442.74BDLBDLBDL96.91
24a-1B-2-004(A4)Grt2-10.0311.2134.600.5032.920.0315.382.440.01BDLBDL97.11
24a-1B-2-005(A5)Grt2-10.0211.2834.440.4232.210.0415.182.70BDLBDL0.0396.31
06b-1B-1-004(A4)Grt2-10.0510.9535.450.1032.940.1115.702.510.01BDLBDL97.80
06b-1B-1-005(A5)Grt2-10.0311.1635.610.1233.650.0415.611.95BDLBDLBDL98.18
06b-1B-1-007(A7)Grt2-10.034.9934.820.0233.91BDL23.131.030.01BDLBDL97.93
06b-1B-2-004(A4)Grt2-10.018.2834.400.0832.660.0118.872.32BDLBDLBDL96.63
06b-1B-2-005(A5)Grt2-10.019.9935.150.0932.86BDL16.772.400.01BDLBDL97.27
06b-1B-2-006(A6)Grt2-10.0311.2335.230.2433.10BDL15.302.280.01BDLBDL97.41
06b-1B-2-007(A7)Grt2-10.0410.0535.140.2933.220.0216.752.14BDLBDLBDL97.65
06b-1B-2-008(A8)Grt2-10.0110.0035.350.0633.59BDL16.681.81BDLBDLBDL97.48
06b-1B-2-009(A9)Grt2-10.027.6834.760.0633.53BDL19.911.42BDLBDL0.0297.40
33-4B-1-001(A1)Grt30.0612.6635.380.5731.15BDL13.793.850.01BDLBDL97.46
33-4B-1-004(A2)Grt30.0612.0535.620.5229.88BDL15.804.52BDLBDL0.0298.46
33-4B-1-005(A3)Grt30.0512.0435.920.6031.21BDL14.823.700.02BDLBDL98.36
33-4B-1-007(A4)Grt30.0112.1035.310.6731.49BDL14.243.60BDLBDL0.0197.43
24a-1B-1-006(A6)Grt30.0610.2834.250.6030.51BDL17.653.81BDLBDL0.0497.20
24a-1B-1-007(A7)Grt30.0110.5933.940.3832.48BDL16.432.92BDLBDLBDL96.74

Fig.5

Endmember component ternary diagram of the garnets from the Xintianling deposit(base map after Meinert et al.,2005)"

Fig.6

Major elements compositions of garnets from Xintianling deposit by EPMA(calculated in apfu)"

Table 3

LA-ICP-MS analysis results of trace elements of garnet from the Xintianling deposit(×10-6)"

测试点位岩石类型元素
ScTiMnRbSrYNbMoLaCePrNdSm
24a-1B-2-A6Grt160.503 17325 700BDLBDL272.0049.5BDL0.090.400.243.098
25c-2B-1A3Grt1101.002 83335 6170.14BDL313.0032.7BDLBDL0.180.121.834.67
25c-2B-1A4Grt164.403 34653 1531.560.19418.0018.1BDLBDL0.070.101.333.77
25c-2B-1A6Grt172.403 90648 6421.593.08599.0021.3BDL0.070.200.131.745.64
33-4B-1-A5Grt196.404 61031 400BDLBDL547.0052.9BDLBDL0.150.051.214.02
24a-1B-1-A3Grt2-132.603 50626 100BDLBDL141.0021.9BDLBDL0.380.182.423.51
24a-1B-1-A4Grt2-125.602 41721 700BDLBDL101.0022.3BDLBDL0.400.193.315.08
24a-1B-1-A5Grt2-125.302 11549 400BDLBDL97.3018.8BDLBDL0.350.101.832.58
24a-1B-2-A2Grt2-152.202 68119 840BDL0.68198.0020.9BDLBDL0.610.354.755.59
24a-1B-2-A3Grt2-126.602 94228 600BDLBDL134.0017.8BDLBDL0.440.242.583.51
24a-1B-2-A4Grt2-127.202 70718 180BDLBDL78.3017.3BDLBDL0.300.242.362.9
24a-1B-2-A5Grt2-127.102 51127 800BDLBDL114.0018.2BDLBDL0.400.161.983.05
06b-1B-1-B4Grt2-21.3046215 7520.050.061.3819.5BDL0.061.630.696.134.09
06b-1B-1-B5Grt2-23.341 16216 2340.070.044.1712.8BDL0.051.100.677.635.9
06b-1B-1-B7Grt2-20.6852610 240BDL0.120.6020.80.520.112.701.008.344.01
06b-1B-2-B4Grt2-22.3362116 1490.060.071.9631.2BDL0.081.830.815.893.52
06b-1B-2-B5Grt2-25.0788917 449BDL0.072.1722.6BDL0.061.040.597.584.84
06b-1B-2-B6Grt2-23.681 26416 326BDL0.095.0317.4BDL0.051.200.537.185.87
06b-1B-2-B7Grt2-23.431 31714 629BDL0.204.8323.3BDL0.081.530.757.045.64
06b-1B-2-B8Grt2-21.4258411 7000.040.170.9717.1BDL0.052.110.857.733.84
06b-1B-2-B9Grt2-21.2756410 3880.120.121.3918.00.590.152.601.026.733.21
24a-1B-1-A6Grt328.802 78451 400BDLBDL151.0017.4BDLBDL0.220.131.191.68
24a-1B-1-A7Grt328.02 30330 3000.480.56115.0012.5BDLBDL0.240.192.044.39
33-4B-1-A1Grt334.33 24039 6000.310.17150.0020.6BDLBDL0.110.061.232.58
33-4B-1-A2Grt328.22 77947 600BDLBDL144.0015.0BDLBDLBDLBDL0.581.34
33-4B-1-A3Grt353.13 41741 7000.69BDL219.0023.7BDLBDLBDLBDLBDL1.26
33-4B-1-A4Grt350.13 55040 300BDLBDL187.0024.3BDLBDL0.07BDL0.631.02
测试点位岩石类型元素
EuGdTbDyHoErTmYbLuHfTaWTh
24a-1B-2-A6Grt11.6826.106.3444.809.5528.704.5933.205.217.8923.700.75BDL
25c-2B-1A3Grt11.5417.205.1642.9010.0036.506.2247.907.982.694.730.65BDL
25c-2B-1A4Grt11.0615.905.0553.3014.2051.908.8971.2011.402.814.681.16BDL
25c-2B-1A6Grt11.4923.907.8179.2021.8083.5014.90116.1018.103.135.111.47BDL
33-4B-1-A5Grt10.8018.306.4566.7019.9076.7014.50112.8019.306.1333.202.340.04
24a-1B-1-A3Grt2-11.268.482.3720.005.4817.602.8321.503.534.064.811.630.03
24a-1B-1-A4Grt2-11.6811.702.1716.603.5010.401.7412.602.063.242.271.250.04
24a-1B-1-A5Grt2-10.906.511.6713.703.6712.802.3618.102.903.272.811.250.04
24a-1B-2-A2Grt2-11.6013.903.1728.507.3927.404.7437.506.324.905.611.280.05
24a-1B-2-A3Grt2-11.447.832.1019.804.9417.703.0223.903.943.495.331.110.04
24a-1B-2-A4Grt2-11.377.581.5911.502.589.021.4111.101.814.193.161.23BDL
24a-1B-2-A5Grt2-10.957.601.9115.604.0516.102.9720.403.603.735.561.12BDL
06b-1B-1-B4Grt2-21.701.870.120.380.02BDLBDLBDLBDL0.123.160.740.23
06b-1B-1-B5Grt2-21.684.560.391.110.130.110.020.150.010.484.000.770.09
06b-1B-1-B7Grt2-21.661.900.080.320.02BDLBDLBDLBDL0.185.151.000.09
06b-1B-2-B4Grt2-21.431.800.140.560.030.070.010.07BDL0.144.211.060.15
06b-1B-2-B5Grt2-21.622.450.190.280.020.100.020.010.01BDL5.081.220.10
06b-1B-2-B6Grt2-21.745.050.441.230.060.11BDL0.08BDL0.395.070.970.08
06b-1B-2-B7Grt2-21.874.070.401.010.070.130.01BDLBDL0.618.560.970.08
06b-1B-2-B8Grt2-21.421.360.160.170.01BDLBDLBDLBDL0.123.790.480.10
06b-1B-2-B9Grt2-21.191.430.090.390.030.01BDL0.09BDL0.185.021.000.13
24a-1B-1-A6Grt30.585.891.8918.705.7523.704.4536.306.413.024.611.02BDL
24a-1B-1-A7Grt31.839.902.1416.703.8013.502.1616.402.532.381.771.34BDL
33-4B-1-A1Grt30.977.922.2820.705.1818.803.2225.204.253.063.811.20BDL
33-4B-1-A2Grt30.765.141.5418.404.8118.903.5028.004.782.582.500.81BDL
33-4B-1-A3Grt30.664.902.3023.907.3931.405.9752.409.464.187.411.05BDL
33-4B-1-A4Grt30.695.722.1122.006.5925.804.4940.207.053.505.321.24BDL

Fig.7

LA-ICP-MS analysis results of trace elements of garnet in Xintianling deposit"

Fig.8

Chondrite-normalized REE patterns of garnet in Xintianling deposit(chondrite data after Sun et al.,1989)"

Table 4

LA-ICP-MS U-Pb dating results of garnet in Xintianling deposit"

测试点位w(Pb)/(×10-6w(U)/(×10-6同位素比值同位素年龄/Ma
207Pb/235U1s/%206Pb/238U1s/%Rho206Pb/238U2s(abs)
06b-1B-01-A10.076.450.304016.20.025576.2-0.0516220
06b-1B-01-A20.147.440.334518.20.028144.1-0.0217915
06b-1B-01-A30.1610.230.385417.70.026805.60.1517019
06b-1B-01-A4BDL10.400.311619.60.024514.00.0415612
06b-1B-01-A50.3911.470.270322.30.025845.5-0.3616418
06b-1B-01-A60.4113.480.219523.00.023174.90.2114814
06b-1B-01-A70.6816.890.421316.60.024795.10.2815816
06b-1B-01-A81.9515.480.768212.90.025243.90.0516112
06b-1B-01-A90.214.990.323922.30.023835.70.0715217
06b-1B-01-A110.166.080.314919.50.027745.10.4417618
06b-1B-01-A120.317.000.380424.00.027647.5-0.0717526
06b-1B-01-A130.257.490.344925.30.026315.50.2016718
06b-1B-01-A140.138.390.264022.70.026645.00.1516917
06b-1B-01-A150.889.530.473921.30.028537.00.1718125
06b-1B-01-A160.518.750.497720.90.024764.30.3215813
06b-1B-01-A170.056.560.578116.80.026878.00.1417127
06b-1B-01-A180.075.960.285119.40.023325.3-0.0314816
06b-1B-01-A190.055.170.469224.30.024607.2-0.0815622
06b-1B-01-A200.115.230.322426.90.021666.90.2213819
06b-1B-01-A21BDL5.090.166447.60.026246.60.3716722
06b-1B-01-A220.194.150.724719.90.025817.50.0116424
06b-1B-01-A230.15.400.302336.50.026847.8-0.3517026
06b-1B-01-A240.145.210.398529.10.022357.2-0.3714220
06b-1B-01-A250.145.150.282124.00.025416.8-0.1216122
06b-1B-01-A270.213.670.890120.50.028928.20.3618330
06b-1B-01-A280.083.170.635522.50.027199.60.4717233
06b-1B-01-A290.113.050.226243.90.025728.30.0016327
06b-1B-01-A300.163.440.089090.30.027956.90.1117724
06b-1B-01-A310.126.370.175035.10.026085.3-0.1716617
06b-1B-01-A320.334.700.531119.50.021167.90.0013521
06b-1B-01-A330.033.860.198931.80.021486.00.1213716
06b-1B-01-A34BDL3.200.198545.80.020806.8-0.0513218
06b-1B-01-A35BDL3.540.242736.60.024467.4-0.2015523
06b-1B-01-A36BDL3.550.070495.20.023857.50.0115122
06b-1B-01-A370.063.840.189747.60.026228.3-0.1516627
06b-1B-01-A38BDL3.680.204542.00.026206.20.1716621
06b-1B-01-A39BDL3.860.239436.00.022808.30.0714524
06b-1B-01-A400.033.670.295830.30.021588.80.0413724

Fig.9

Tera-Wasserburg diagram of U-Pb dating of garnet in Xintianling deposit"

Antao S M, Klincker A M,2014.Crystal structure of a birefringent andradite-grossular from Crowsnest Pass,Alberta,Canada[J].Powder Diffraction,29(1):20-27.
Bai Daoyuan, Ma Tieqiu, Wang Xianhui,et al,2008.Progress in the study of mesozoic tectono-magmatism and mineralization in the central segment of the Nanling Mountains—Summary of major achievements of the 1∶250 000 geological survey in southeastern Hunan[J].Geology in China,53(3):436-455.
Bau M,1991.Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J].Chemical Geology,93(3/4):219-230.
Cai Minghai, Han Fengbin, He Longqing,et al,2008.He,Ar isotope characteristics and Rb-Sr dating of the Xintianling skarn scheelite deposit in Southern Hunan,China[J].Acta Geoscientica Sinica,29(2):167-173.
Carswell D A, Wilson R N, Zhai M,2000.Metamorphic evolution,mineral chemistry and thermobarometry of schists and orthogneisses hosting ultra-high pressure eclogites in the Dabieshan of central China[J].Lithos,52(1/2/3/4):121-155.
Deng X D, Li J W, Luo T,et al,2017.Dating magmatic and hydrothermal processes using andradite-rich garnet U-Pb geochronometry[J].Contributions to Mineralogy and Petrology,172(9):71.
Ding T, Ma D, Lu J,et al,2018.Garnet and scheelite as indicators of multi-stage tungsten mineralization in the Huangshaping deposit,southern Hunan Province,China[J].Ore Geology Reviews,94:193-211.
Dragovic B, Samanta L M, Baxter E F,et al,2012.Using garnet to constrain the duration and rate of water-releasing metamorphic reactions during subduction:An example from Sifnos,Greece[J].Chemical Geology,314/315/316/317:9-22.
Dziggel A, Wulff K, Kolb J,et al,2009.Significance of oscillatory and bell-shaped growth zoning in hydrothermal garnet:Evidence from the Navachab gold deposit,Namibia[J].Chemical Geology,262(3/4):262-276.
Fan X, Wang X, Lü X,et al,2019.Garnet composition as an indicator of skarn formation:LA-ICP-MS and EPMA studies on oscillatory zoned garnets from the Haobugao skarn deposit,Inner Mongolia,China[J].Geological Journal,54(4):1976-1992.
Fang Fang,2020.Prospecting significance of Xintianling tungsten deposit in Chenzhou City,Hunan Province[J].World Nonferrous Metals,(18):72-73.
Fei X, Zhang Z, Cheng Z,et al,2019.Factors controlling the crystal morphology and chemistry of garnet in skarn deposits:A case study from the Cuihongshan polymetallic deposit,Lesser Xing’an Range,NE China[J].American Mineralogist,104(10):1455-1468.
Feng Jiawei,2020.Study on the Relationship Between Magmatism of Qitianling Granitoid Batholith and Tin Mineralization in Southern Hunan[D].Chengdu:Chengdu University of Technology.
Gaspar M, Knaack C, Meinert L D,et al,2008.REE in skarn systems:A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J].Geochimica et Cosmochimica Acta,72(1):185-205.
Gevedon M, Seman S, Barnes J D,et al,2018.Unraveling histories of hydrothermal systems via U-Pb laser ablation dating of skarn garnet[J].Earth and Planetary Science Letters,498:237-246.
Haas J R,1995.Rare earth elements in hydrothermal systems:Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J].Geochimica et Cosmochimica Acta,59(21):4329-4350.
Hu Jiabin,2012.The Characteristic and Prospecting Significance of Tungsten-Bearing Granitoids of Xintianling Skarn Scheelite Deposit,Southern Hunan Province,Nanling Range[D].Nanjing:Nanjing University.
Hu Ruizhong, Mao Jingwen, Fan Weiming,et al,2010.Some scientific questions on the intra-continental metallogeny in the South China continent[J].Earth Science Frontiers,17(2):13-26.
Li H, Wu J H, Evans N J,et al,2018.Zircon geochronology and geochemistry of the Xianghualing A-type granitic rocks:Insights into multi-stage Sn-polymetallic mineralization in South China[J].Lithos,312/313:1-20.
Li X H, Li W X, Li Z X,et al,2009.Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb zircon ages,geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J].Precambrian Research,174(1/2):117-128.
Lima S M, Corfu F, Neiva A M R,et al,2012.U-Pb ID-TIMS dating applied to U-rich inclusions in garnet[J].American Mineralogist,97(5/6):800-806.
Liu Yong, Li Tingdong, Xiao Qinghui,et al,2011.Qitianling granite magma mixing origin:The host rock and its microgranular dioritic enclaves of zircon U-Pb dating and Hf isotope evidence[J].Geological Science and Technology Information,30(2):19-27.
Mao Jingwen, Li Xiaofeng, Lehmann B,et al,2004. 40Ar-39Ar dating of tin ores and related granite in Furong tin orefield,Hunan Province,and its geodynamic significance[J].Mineral Deposits,23(2):164-175.
Meinert L D, Dipple G M, Nicolescu S,2005.World Skarn Deposits[M]//Economic Geology 100th Anniversary Volume.Littleton:Society of Economic Geologists.
Moretti R, Ottonello G,1998.An appraisal of endmember energy and mixing properties of rare earth garnets[J].Geochimica et Cosmochimica Acta,62(7):1147-1173.
Paton C, Hellstrom J, Paul B,et al,2011.Iolite:Freeware for the visualisation and processing of mass spectrometric data[J].Journal of Analytical Atomic Spectrometry,26(12):2508-2518.
Peng J, Zhou M F, Hu R,et al,2006.Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit,central Nanling district,South China[J]. Miner Deposita,41(7):661-669.
Zs Rak, Ewing R C, Becker U,2011.First-principles investigation of Ca3(Ti,Zr,Hf,Sn)2Fe2SiO12 garnet structure for incorporation of actinides[J].Physical Review B,83(15):155123.
Rubatto D, Hermann J,2007.Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks[J].Chemical Geology,241(1):38-61.
Shannon R D,1976.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J].Acta Crystallographica Section A,32(5):751-767.
Shu Liangshu,2012.An analysis of principal features of tectonic evolution in South China block[J].Geological Bulletin of China,31(7):1035-1053.
Shu Liangshu, Zhou Xinmin, Deng Ping,et al,2006.Principal geological features of Nanling tectonic belt,South China[J].Geological Review,52(2):251-265.
Shuang Y, Liu D, Gong K,et al,2014.Zircon U‐Pb geochronology of the granite from Xintianling W deposit,Southern Hunan Province[J].Acta Geologica Sinica—English Edition,88(Supp.2):35-37.
Shuang Yan, Gong Yechao, Li Hang,et al,2016.Fluid-inclusion geochemistry of the lage-sized Xintianling tungsten deposit,Hunan Province,China[J].Geochimica,45(6):569-581.
Smith M P, Henderson P, Jeffries T E R,et al,2004.The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole,Skye,Scotland,UK:Constraints on processes in a dynamic hydrothermal system[J].Journal of Petrology,45(3):457-484.
Sun S S, McDonough W F,1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society,London,Special Publications,42(1):313-345.
Sun W D, Xu D R, Chi G X,et al,2017.Yanshanian(Late Mesozoic)ore deposit in China—An introduction to the special issue[J].Ore Geology Reviews,88:481-490.
Tian Z D, Leng C B, Zhang X C,et al,2019.Chemical composition,genesis and exploration implication of garnet from the Hongshan Cu-Mo skarn deposit,SW China[J].Ore Geology Reviews,112:103016.
van Westrenen W, Allan N L, Blundy J D,et al,2000.Atomistic simulation of trace element incorporation into Garnets—Comparison with experimental garnet-melt partitioning data[J].Geochimica et Cosmochimica Acta,64(9):1629-1639.
van Westrenen W, Allan N L, Blundy J D,et al,2003.Dopant incorporation into garnet solid solutions—A breakdown of Goldschmidt’s first rule[J].Chemical Communications,(6):786-787.
Vermeesch P,2021.Corrigendum to “IsoplotR:A free and open toolbox for geochronology” [Geosci.Front.9 (2018),1479-1493][J].Geoscience Frontiers,12(5):101227.
Wang F Y, Ling M X, Ding X,et al,2011.Mesozoic large magmatic events and mineralization in SE China:Oblique subduction of the Pacific plate[J].International Geology Review,53(5/6):704-726.
Wang Jingqiang,2017.Study of Key Issues Related to Tectonic Evolution of South China[D].Nanjing:Nanjing University.
Wang Y, Fan W, Zhang G,et al,2013.Phanerozoic tectonics of the South China block:Key observations and controversies[J].Gondwana Research,23(4):1273-1305.
Wei Ning,2019.Geological characteristics and prospecting indications of Xintianling scheelite deposit in Hunan Province[J].World Nonferrous Metals,(12):40-42.
Wood S A, Samson I M,2000.The hydrothermal geochemistry of tungsten in granitoid environments:I.Relative solubilities of ferberite and scheelite as a function of T,P,PH,and mNaCl[J].Economic Geology,95(1):143-182.
Wu Y, Tagen D, Menglong Z,2016.Oxygen fugacity studies and tectonic evolution of Xintianling granite in Hunan province China[J].International Journal of Earth Sciences and Engineering,9(1):142-149.
Xu Deru, Fu Gonggu, Xu Yiming,et al,2016.Research and Prospecting Exploration of Tin Polymetallic Deposits in the Qianlishan-Qitianling Region,South Hunan Province[M].Beijing:Science Press.
Yang J H, Peng J T, Hu R Z,et al,2013.Garnet geochemistry of tungsten-mineralized Xihuashan granites in South China[J].Lithos,177:79-90.
Yin Shunsheng, Wang Changlie,1994.Xingtianling scheelite deposit in Chenzhou County[J].Hunan Geology,13(4):205-211.
Yu Fan, Shu Qihai, Zeng Qingwen,et al,2020.Chemical composition of garnet from the Xintianling skarn W deposit in southern Hunan and its geological significance[J].Acta Pe-trologica Sinica,38(1):78-90.
Yuan Shunda, Zhang Dongliang, Shuang Yan,et al,2012.Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province,China and its geological implications[J].Acta Petrologica Sinica,28(1):27-38.
Zhai D G, Liu J J, Zhang H Y,et al,2014.Origin of oscillatory zoned garnets from the Xieertala Fe-Zn skarn deposit,northern China:In situ LA-ICP-MS evidence[J].Lithos,190/191:279-291.
Zhang Guowei, Guo Anlin, Wang Yuejun,et al,2013.Tectonics of South China continent and its implications[J].Science China:Earth Sciences,43(10):1553-1582.
Zhang Hongfei, Gao Shan,2012.Geochemistry[M].Beijing:Geology Press.
Zhang Qi, Jin Weijun, Li Chengdong,et al,2009.Yanshanian large-scale magmatism and lithosphere thinning in Eastern China:Relation to large igneous province[J].Earth Science Frontiers,16(2):21-51.
Zhang R, Lu J, Wang R,et al,2014.Redox state of the granitic rocks and formation of the scheelite skarn in the Xintianling deposit,Nanling range,South China[J].Acta Geologica Sinica—English Edition,88(Supp.2):64-65.
Zhang R, Lu J, Zhu J,et al,2011.Re-Os and U-Pb geochronology of large Xintianling skarn-type scheelite deposit,Nanling Range,China[C]//11th SGA Biennial Meeting.Antofagasta:Society of Geology Applied to Mineral Deposits:Let’s Talk Ore Deposits.
Zhang Rongqing,2015.Petrogenesis and Metallogeny of the W-and Sn-bearing Granites in Southern Hunan Province:Case Study from Wangxianling and Xintianling[D].Nanjing:Nanjing University.
Zhang Y, Shao Y, Wu C,et al,2017.LA-ICP-MS trace element geochemistry of garnets:Constraints on hydrothermal fluid evolution and genesis of the Xinqiao Cu-S-Fe-Au Deposit,Eastern China[J].Ore Geology Reviews,86:426-439.
Zhang Yinping, Shao Yongjun, Xiong Yiqu,et al,2022.Metallogenic indication from geochemical characteristics of garnet in Gejiu Sn-Cu ore-concentrated area,Yunnan Province[J].Mineral Deposits,41(4):682-701.
Zhao Bin, Li Tongjin, Li Zhaoping,1983.Experimental study of physico-chemical conditions of the formation of skarns[J].Geochimica,12(3):256-267,331.
Zhao L, Guo F, Fan W,et al,2016.Early Cretaceous potassic volcanic rocks in the Jiangnan Orogenic Belt,East China:Crustal melting in response to subduction of the Pacific-Izanagi ridge?[J].Chemical Geology,437:30-43.
Zhao Panlao, Yuan Shunda, Yuan Yabin,2018.Geochemical characteristics of garnet in the Huangshaping polymetallic deposit,southern Hunan:Implications for the genesis of Cu and W-Sn mineralization[J].Acta Petrologica Sinica,34(9):2581-2597.
Zhu Jinchu, Wang Rucheng, Zhang Peihua,et al,2009.Zircon U-Pb geochronological framework of Qitianling granite batholith,middle part of Nanling Range,South China[J].Scientia Sinica (Terrae),39(8):1112-1127,1170-1180.
Zou S, Zou F, Ning J,et al,2018.A stand-alone Co mineral deposit in northeastern Hunan Province,South China:Its timing,origin of ore fluids and metal Co,and geodynamic setting[J].Ore Geology Reviews,92:42-60.
柏道远,马铁球,王先辉,等,2008.南岭中段中生代构造—岩浆活动与成矿作用研究进展[J].中国地质,35(3):436-455.
蔡明海,韩凤彬,何龙清,等,2008.湘南新田岭白钨矿床He,Ar同位素特征及Rb-Sr测年[J].地球学报,29(2):167-173.
方芳,2020.湖南省郴州市新田岭钨矿找矿意义[J].世界有色金属,(18):72-73.
冯佳伟,2020.湘南骑田岭花岗岩体岩浆作用与锡矿成矿作用关系研究[D].成都:成都理工大学.
胡加斌,2012.湘南新田岭含钨花岗岩特征及找矿意义[D].南京:南京大学.
胡瑞忠,毛景文,范蔚茗,等,2010.华南陆块陆内成矿作用的一些科学问题[J].地学前缘,17(2):13-26.
刘勇,李廷栋,肖庆辉,等,2011.骑田岭花岗岩体的岩浆混合成因:寄主岩及其暗色闪长质包体的锆石U-Pb年龄和Hf同位素证据[J].地质科技情报,30(2):19-27.
毛景文,李晓峰, Lehmann B,等,2004.湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar年龄及其地球动力学意义[J].矿床地质,23(2):164-175.
舒良树,2012.华南构造演化的基本特征[J].地质通报,31(7):1035-1053.
舒良树,周新民,邓平,等,2006.南岭构造带的基本地质特征[J].地质论评,52(2):251-265.
双燕,龚业超,李航,等,2016.湘南新田岭大型钨矿流体包裹体地球化学特征[J].地球化学,45(6):569-581.
王静强,2017.华南构造演化有关的几个重要科学问题研究[D].南京:南京大学.
韦宁,2019.湖南新田岭矿区地质特佂及找矿标志[J].世界有色金属,(12):40-42.
许德如,符巩固,许以明,等,2016.湘南千里山-骑田岭地区锡多金属矿床研究与找矿勘查[M].北京:科学出版社.
殷顺生,王昌烈,1994.郴县新田岭钨矿床地质特征[J].湖南地质,13(4):205-211.
郁凡,舒启海,曾庆文,等,2022.湘南新田岭矽卡岩型钨矿床石榴子石成分特征及其地质意义[J].岩石学报,38(1):78-90.
袁顺达,张东亮,双燕,等,2012.湘南新田岭大型钨钼矿床辉钼矿Re-Os同位素测年及其地质意义[J].岩石学报,28(1):27-38.
张国伟,郭安林,王岳军,等,2013.中国华南大陆构造与问题[J].中国科学(地球科学),43(10):1553-1582.
张宏飞,高山,2012.地球化学[M].北京:地质出版社.
张旗,金惟俊,李承东,等,2009.中国东部燕山期大规模岩浆活动与岩石圈减薄:与大火成岩省的关系[J].地学前缘,16(2):21-51.
张银平,邵拥军,熊伊曲,等,2022.云南个旧锡铜矿集区石榴子石地球化学特征及成矿指示[J].矿床地质,41(4):682-701.
章荣清,2015.湘南含钨和含锡花岗岩成因及成矿作用[D].南京:南京大学.
赵斌,李统锦,李昭平,1983.夕卡岩形成的物理化学条件实验研究[J].地球化学,12(3):256-267,331.
赵盼捞,袁顺达,原垭斌,2018.湘南黄沙坪多金属矿床石榴子石地球化学特征及其对Cu与W-Sn复合成矿机理的指示[J].岩石学报,34(9):2581-2597.
朱金初,王汝成,张佩华,等,2009.南岭中段骑田岭花岗岩基的锆石U-Pb年代学格架[J].中国科学(D辑:地球科学),39(8):1112-1127,1170-1180.
[1] Shengwei ZHANG,Teng DENG,Deru XU,Yueqiang ZHOU,Guojun DONG,Zenghua LI,Wen MA,Ke XU,Yan HAI. Genesis of Carbonaceous Material in the Wangu Gold Deposit and Its Relationship with Gold Mineralization [J]. Gold Science and Technology, 2022, 30(6): 835-847.
[2] Yuzhang LAI,Xueyi ZHI,Ronghua SHU. Experimental Study on Uniaxial Compression Mechanics and Failure Characteristics of Composite Rocks [J]. Gold Science and Technology, 2022, 30(5): 778-786.
[3] Tai’an WAN,Deru XU,Wen MA,Shengwei ZHANG,Guojian WANG,Yubing BIAN,Bo LI. Trace Element Characteristics of Different Chronology Pyrite in Wangu Gold Deposit,Northeast Hunan and Its Implication to Gold Mineralization Mechanism [J]. Gold Science and Technology, 2022, 30(5): 676-690.
[4] Yuanhong XIAN,Huasi ZHAN,Jiantang LI. Isotope Geochemical Characteristics and Geological Significance of Skarn Type Iron Polymetallic Deposit in Huaiji Area,Guangdong Province [J]. Gold Science and Technology, 2021, 29(6): 805-816.
[5] Bo YANG,Xiong TONG,Xian XIE,Xiao WANG. Study on the Gold Recovery from Flotation Tailings of a Refractory Gold Ores in Gansu Province by a Process Combining Mineral Processing and Metallurgy [J]. Gold Science and Technology, 2020, 28(2): 285-292.
[6] Jianheng GUO, Chengbiao LENG, Xingchun ZHANG, Wei ZHANG, Chongjun YIN, Lujia ZHANG, Zhendong TIAN. Trace Elemental Compositions of Iron Oxides from the Lannitang Porphyry Cu-Au Deposit in the Zhongdian Region (Northwest) and the Geological Significances:A LA-ICP-MS Study [J]. Gold Science and Technology, 2019, 27(5): 659-677.
[7] Yunfeng GAO,Xingke YANG,Shiqi RUAN,Ke HAN,Weisheng ZHANG,Wei ZHU. Characteristics of Ore-controlling Structures and Prospecting Indicators in the Western Tungsten Deposit Area of Zhen’an,South Qinling [J]. Gold Science and Technology, 2019, 27(4): 489-496.
[8] Ouxiang WEI, Dayu ZHANG, Jinsong LIU, Xuefeng CHEN, Longxiang YE, Hua JIANG, Xiang QIAN, Taofa ZHOU. Geochronology and Genesis of Taxia Granodiorite Intrusion in the Northwest Jiangnan Proterozoic Terrane [J]. Gold Science and Technology, 2018, 26(6): 689-705.
[9] ZHENG Muting,ZHANG Shugen,HE Zhongchun. Occurrence of Gold and Silver and Their Relation to Metallogenic Evolution in Kangjiawan Au-Ag Polymetallic Deposit,Hunan Province [J]. Gold Science and Technology, 2017, 25(6): 31-42.
[10] SONG Junqiu,GU Jianjun,LANG Penglin. Analysis of the Geological Characteristics and Genesis of Changlingzi Lead-Zinc Deposit in Inner Mongolia [J]. Gold Science and Technology, 2016, 24(4): 54-59.
[11] WU Xingquan,WANG Zhihua,WANG Liang,CHANG Chunjiao,CONG Runxiang,ZHANG Huiyu. Geological Characteristics and Prospecting Direction of the Chaobuleng Iron Polymetallic Deposit in Inner Mongolia [J]. Gold Science and Technology, 2014, 22(2): 31-37.
[12] ZHANG Zhi-Gan, WANG Jian-Ning. Geological Characteristics and Prospecting Direction of Huatong Au-Mo Deposit [J]. J4, 2009, 17(2): 34-37.
[13] LIN Hongyong. Geological Characteristics,Au-mineralization,and Metallogenesis of the Qixinghe Gold Deposit,Shuangyashan,Jilin [J]. J4, 2008, 16(3): 26-29.
[14] HU Meng-Liang, YANG Jian-Guo, LI Yuan-Chang. The Geological Character and Genesis Analyse Of TuanJie Mountain Copper-Gold Mine In BaoQing County [J]. J4, 2006, 14(4): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!