img

Wechat

Adv. Search

Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (4): 623-631.doi: 10.11872/j.issn.1005-2518.2022.04.165

• Mining Technology and Mine Management • Previous Articles    

Study on Optimization of Flotation Time and Magnification Coefficient of a Refractory Gold Ore Concentrator

Pingtian MING1,2,3(),Fei LI1,2,3(),Zhaohua XIONG1,2,3,Ziqiang CHEN1,2,3,Shengping MA1,2,3   

  1. 1.Dulan Jinhui Mining Co. , Ltd. , Dulan 816100, Qinghai, China
    2.Qinghai 6th Institute of Geology Exploration, Xining 816000, Qinghai, China
    3.The Engineering and Technology Research Center for the Development of Gold Mining Resources in Qinghai Province, Dulan 816100, Qinghai, China
  • Received:2021-11-09 Revised:2022-05-25 Online:2022-08-31 Published:2022-10-31
  • Contact: Fei LI E-mail:ptming4500@sina.com;376169069@qq.com

Abstract:

Flotation time is one of the important parameters in the design of concentrator.The length of flotation time has great influence on the recovery and utilization of mineral resources and the operation effect of the concentrator.The determination of flotation time is related to the flotation time and magnification factor of small laboratory tests.In view of the selection of flotation time for refractory gold ores and the verification of the amplification factor of the flotation time of the concentrator,the concentrator was designed on the basis of the design of a 1 500 t/d concentrator,and the actual flotation time and amplification factor were calculated.The flotation time of the pilot scale test was 31 min.The designed flotation time is 54 min,and the average amplification coefficient is 1.74(roughing K value is 1.5,cleaning K value is 2.50 to 2.67).The actual flotation time of the concentrator is 68.99 min,and the actual amplification coefficient is 2.23(the actual rough scavenging K value is 1.86 to 2.41,and the actual cleaning K value is 1.88 to 3.45).With the change of ore properties,the pilot scale test of flotation process optimization was carried out for the gold mine according to the change of ore properties.Compared with the flotation test in the design,the flotation concentration is increased from 25% to 28%,the -74 μm content of grinding classification product is reduced from 75% to 71%,and the collector butyl xanthate was replaced with iso-amyl xanthate.The amount of sodium carbonate in rough scavenging process increases by 500 g/t,the amount of copper sulfate decreases by 200 g/t,no more copper sulfate and sodium carbonate was added in scavenging,and the flotation time is reduced from 31 min to 21 min.On this basis,the mineral processing tests with the same grinding fineness,flotation concentration and system conditions were conducted in the mill.The best ore dressing plant capacity of 1 704 t/d was determined.Combined with the survey of flotation process,according to the laboratory flotation test,the time of flotation,the flotation machine volume of each activity and the concentration of flotation were determined.The flotation time and K value of each flotation operation in the concentrator were calculated.The total flotation time of the concentrator reaches 84.08 min,and the K value of the flotation time is 4.00.The K value of rough sweep selection is 3.96 to 4.21 with an average of 4.10,and the K value of clean selection is 3.66 to 4.00 with an average of 3.81.After optimization,ore processing capacity increase by 204 t/d,gold concentrate concentration ratio decrease by 0.11 and gold recovery rate increase by 3.22% when the gold grade of raw ore decrease by 0.47 g/t.The research provides reference for the design of concentrator of the same type ore.

Key words: refractory gold ore, flotation time, amplification coefficient, process optimization, capacity, flotation performance

CLC Number: 

  • TD953

Fig.1

Design flow chart of beneficiation test of a gold concentration"

Table 1

Design of beneficiation test indexes of a gold concentrator"

选矿指标设计指标值
原矿金品位/(×10-63.64
精矿金品位/(×10-637.00
尾矿金品位/(×10-60.72
精矿产率/%11.11
金回收率/%82.42
金富集比10.16

Fig.2

Flow chart of beneficiation process of a gold mine"

Table 2

Calculation results of 1 500 t/d flotation single series process"

作业名称产率/%选厂浮选浓度/%浮选机有效容积/m3浮选时间/minK
设计试验选厂实际设计选厂实际
粗选153.4725.004012814.851.501.86
扫一108.1123.204012819.301.502.41
扫二94.9222.503212816.971.502.12
粗扫选小计112362451.121.502.13
精一33.9221.00121047.512.501.88
精二11.1120.0088310.362.673.45
精选小计2018717.872.572.55
累计132543168.991.742.23

Table 3

Production indexes of the concentrator after reaching the target"

选矿指标达产指标值
原矿金品位/(×10-62.77
精矿金品位/(×10-627.34
尾矿金品位/(×10-60.58
精矿产率/%8.20
金回收率/%80.94
金富集比9.87

Fig.3

Concentration test flow chart of a gold mine"

Table 4

Flotation test results of different concentrations"

浮选浓度/%金品位/(×10-6选矿指标
原矿精矿尾矿产率/%回收率/%金富集比
23.872.6728.120.617.4978.8610.53
25.112.8127.740.638.0479.389.87
28.082.7826.870.598.3380.559.67
29.242.7226.400.638.1178.729.71

Table 5

Flotation time test"

浮选流程刮泡时间原矿金品位/(×10-6产品金品位/(×10-6作业产率/%累积产率/%作业回收率/%累积回收率/%
粗选第1 min2.7843.212.462.4638.2438.25
第2 min34.551.493.9518.5256.75
第3 min17.782.496.4415.9372.68
第4~5 min11.321.898.337.7080.38
第6~7 min5.210.248.570.4580.83
第8~9 min1.200.549.110.2381.06
扫一第1 min0.593.211.871.8710.1710.17
第2~3 min1.831.503.374.6514.82
第4~5 min1.721.594.954.6419.46
第6~7 min1.510.945.892.4121.87
扫二第1~2 min0.501.482.002.005.925.92
第3~4 min1.371.153.153.159.07
第5~7 min0.710.663.810.9410.01

Fig.4

Process flow of closed-circuit test of process optimization"

Table 6

Beneficiation index of optimized test"

选矿指标优化后指标值
原矿金品位/(×10-62.36
精矿金品位/(×10-624.1
尾矿金品位/(×10-60.41
精矿产率/%8.23
金回收率/%84.06
金富集比10.21

Table 7

Test results of the influence of different flotation concentration on flotation index in"

浮选浓度/%实验室小型试验浮选时间/min选厂实际粗选时间/min选厂实际K金品位/(×10-6粗选作业指标
原矿精矿尾矿产率/%回收率/%金富集比
25.17521.714.342.3721.550.767.7470.429.09
27.16521.394.282.3123.410.727.0171.0210.13
29.54521.004.202.3922.170.697.9173.419.28
31.07520.754.152.3121.380.757.5669.999.26
33.17520.404.082.3320.220.778.0269.608.68

Table 8

Test results of the influence of different aeration volume and flotation liquid level on flotation index"

浮选液位/%充气量/(m3·m-2·min-1

实验室小型试验

浮选时间/min

选厂实际浮选时间/min选厂实际K金品位/(×10-6粗选作业指标
原矿精矿尾矿产率/%回收率/%金富集比
752.90520.104.022.3220.550.718.1171.888.86
802.85521.444.292.3022.450.707.3671.809.76
852.83522.784.562.3423.000.757.1570.249.83
902.80524.124.822.3124.120.726.7970.9510.44
922.77524.664.932.3225.190.716.5871.4110.86

Table 9

Test results of the influence of different ore processing capacity on flotation index"

批次处理量/(t·d-1平均选矿参数金品位/(×10-6选矿指标
粗选浓度/%-74 μm含量/%原矿精矿尾矿产率/%回收率/%金富集比
11 65629.4171.192.3620.170.419.9184.528.55
21 68029.3571.172.1324.270.377.4084.1211.39
31 70429.2871.162.3022.450.408.6184.169.76
41 72829.3270.982.3724.090.428.2283.6210.16

Table 10

Calculation results of single series flotation time for optimal ore processing capacity of concentrator"

作业

名称

产率

/%

选厂浮选浓度/%实验室小型试验浮选时间/min选厂实际浮选时间/min选厂实际K
合计2184.084.00
粗选115.3229.28521.044.21
扫一103.2125.42519.823.96
扫二98.6625.37416.554.14
小计1457.424.10
精一30.6525.18414.653.66
精二8.6123.24312.014.00
小计726.663.81
Chen Mingjie, You Tengsheng, Sun Mingjun,et al,2018.Review of common flotation machines at home and abroad and problems needing attention in design and selection[J].China Mine Engineering,47(2):31-35.
Chen Xiaodong,2021.Principle and practice of enhanced flotation performance of fine particles by JRF micro-bubble flotaion machine[J].Nonferrous Metals(Mineral Processing Section),(1):112-116.
Deng Shengwei, Qi Zhongxu,2019.Discussion problems in industrialization process from small-scale mineral processing test results[J].Mining Research and Development,39(3):72-74.
Editorial Board of Mineral Processing Design Manual,1988.Mineral Processing Design Manual[M].Beijing:Metallurgical Industry Press.
Li Hong,2011.Selection calculation of beneficiation equipment(flotation machine)[J].Xinjiang Non-Ferrous Metals,(5):42-45.
Li Lei, Liu Zhihong,2014.Effect of ultrasonic treatment time on ash reduction by flotation of slime[J].Shandong Industrial Technology,(4):15,42.
Ichi Lijima, Liu Zongyan,1990.Study on the proportional coefficient of flotation time amplification[J].Foreign Metal Ore Dressing,(5):19-22.
Liu Jianzhong,2009.Experimental study on copper-nickel mixed flotation time of copper-nickel ore[J].Xinjiang Non-ferrous Metals,(5):42-45.
Liu Shouxin, Huang Jianfen, Shi Weihong,2010.Experimental study on beneficiation of a gold mine in Yunnan [J].Mining and Metallurgy,(1):33-35.
Qin Wu, Li Tongqi, Wang Nianfeng,et al,2018.Study on flotation process for improving grade and recovery of lithium mica concentrate[J].Foshan Ceramics,(8):27-31.
Shi Shuaixing, Zhang Yuejun, Han Dengfeng,et al,2013.Analysis of several problems in industrial selection of large flotation machine in China[J].Nonferrous Metals(Mineral Processing Section),(Supp.):199-201.
Tang Yisheng,2020.Mineral processing technique for a certain complex Pb-Zn-Sn polymetallic ore[J].Mining and Metallurgical Engineering,40(3):68-71.
Tian Yilan,2015.Experimental study on beneficiation of a gold mine in Yunnan [J].Mining and Metallurgy,24(2):15-18.
Yang Bo, Tong Xiong, Xie Xian,et al,2020.Study on the gold recovery from flotation tailings of a refractory gold ores in Gansu Province by a process combining mineral processing and metallurgy[J].Gold Science and Technology,28(2):285-292.
Yang Junlong, Guo Yanhua, Guo Haining,et al,2020.Experimental study on beneficiation process of carbonate refractory gold ore[J].Non-ferrous Metals(Mineral Processing Section),(1):42-47.
Yin Lu, Jin Zhenan, Yang Hongying,et al,2018.Present situation forecast of gold resources in China[J].Gold Science and Technology,28(2):17-24.
Yu Houfu, Shen Tao, Liu Qian,2020.Beneficiation practice of improving recovery rate of flotation column[J].Mining Engineering Research,35(1):69-73.
Yuan Linyang, Lu Shijie, Zhu Shenglin,et al,2020.Study on residence time distribition of pulp in flotation cell[J].Nonferrous Metals(Mineral Processing Section),(4):100-104.
Zhang Lixia,2002.Improvement of gold recovery of refractory gold flotation concentrate by continuous bioleleaching and thiourea leaching[J].Hydrometallurgy,21(3):142.
Zhao Tielin,2018.Transformation of ore dressing process of nanfen concentrator in beishan mining area[J].Metal Mine,(2):103-106.
Zhou Jianyue,2018.Research on flotation process and production practice of Ludouzhan gold-antimony ore [J].Hunan Non-ferrous Metals,34(1):20-25.
陈名洁,尤腾胜,孙明俊,等,2018.国内外常用浮选机综述及其设计选型中应注意的问题[J].中国矿山工程,47(2):31-35.
陈晓东,2021.精锐微泡浮选机强化微细粒浮选的机理与实践[J].有色金属(选矿部分),(1):112-116.
邓圣为,祁忠旭,2019.选矿小型试验成果工业化过程遇到的问题探讨[J].矿业研究与开发,39(3):72-74.
饭岛一,刘宗炎,1990.关于浮选时间放大比例系数的研究[J].国外金属矿选矿,(5):19-22.
李红,2011.选矿设备(浮选机)选择计算[J].新疆有色金属,(5):42-45.
李垒,刘志红,2014.超声处理时间对煤泥浮选降灰的影响[J].山东工业技术,(4):15,42.
刘建忠,2009.有关铜镍矿铜镍混合浮选时间的试验研究[J].新疆有色金属,(1):60-64.
刘守信,黄健芬,师伟红,2010.云南某金矿选矿试验研究[J].矿冶,(1):33-35.
秦伍,李同其,王念峰,等,2018.提高锂云母精矿品位及回收率的浮选工艺研究[J].佛山陶瓷,(8):27-31.
史帅星,张跃军,韩登峰,等,2013.浅析我国大型浮选机工业选型中几个问题[J].有色金属(选矿部分),(增):199-201.
唐义胜,2020.某复杂铅锌锡多金属选矿工艺试验研究[J].矿冶工程,40(3):68-71.
田祎兰,2015.云南某金矿选矿试验研究[J].矿冶,24(2):15-18.
《选矿设计手册》编委会,1988.选矿设计手册[M].北京:冶金工业出版社.
杨波,童雄,谢贤,等,2020.选冶联合提高甘肃某难浸金矿浮选尾矿金回收率的试验研究[J].黄金科学技术,28(2):285-292.
杨俊龙,郭艳华,郭海宁,等,2020.碳酸盐型难选金矿石选矿工艺流程试验研究[J].有色金属(选矿部分),(1):42-47.
殷璐,金哲男,杨红英,等,2018.我国黄金资源综合利用现状与展望[J].黄金科学技术,26(1):17-24.
余厚福,申滔,刘倩,2020.提高浮选柱作业回收率选矿实践[J].矿业工程研究,35(1):69-73.
袁琳阳,卢世杰,朱圣林,等,2020.浮选机内矿浆停留时间分布研究[J].有色金属(选矿部分),(4):100-104.
张丽霞,2002.利用连续生物浸出和硫脲浸出提高难处理浮选金精矿的金回收率[J].湿法冶金,21(3):142.
赵铁林,2018.南芬选矿厂处理北山采区矿石选矿工艺流程改造[J].金属矿山,(2):103-106.
周建月,2018.录斗艘金锑矿浮选工艺研究与生产实践[J].湖南有色金属,34(1):20-25.
[1] Chengyu YI,Yingjie PEI,Shuai MA. Experimental Study and Application of Grinding Medium Ratio Optimization in Jiaojia Gold Mine [J]. Gold Science and Technology, 2022, 30(1): 122-130.
[2] Bo YANG,Xiao WANG,Yonggang XIE,Xian XIE. Study on the Processing Mineralogy of a Refractory Gold Ores from Qinghai Province [J]. Gold Science and Technology, 2021, 29(3): 467-475.
[3] Meng WANG, Xiuzhi SHI, Shu ZHANG. Evaluation Research on Safety Guarantee Conditions of Underground Metal Mines Oriented to Optimizing Production Capacity [J]. Gold Science and Technology, 2020, 28(5): 753-760.
[4] Ligang XU,Jingwen GUAN,Meijuan XU. Construction of China-Pakistan Economic Corridor:Cooperation Mode and Guarantee Measures of Nonferrous Metals Industry [J]. Gold Science and Technology, 2020, 28(2): 195-202.
[5] Bo YANG,Xiong TONG,Xian XIE,Xiao WANG. Study on the Gold Recovery from Flotation Tailings of a Refractory Gold Ores in Gansu Province by a Process Combining Mineral Processing and Metallurgy [J]. Gold Science and Technology, 2020, 28(2): 285-292.
[6] Fei LI,Ziqiang CHEN. Process Design Optimization and Application of a Dressing and Metallurgy Pilot Plant in Qinghai [J]. Gold Science and Technology, 2020, 28(1): 142-147.
[7] Hepeng ZHOU, Jie HU, Chaoyang DUAN, Pan DENG, Zhigang ZHONG, Yongbing ZHANG. Investigation and Optimization of Processing Flowsheet for a Luoba Lead-zinc Mine in Gansu Province [J]. Gold Science and Technology, 2019, 27(5): 696-703.
[8] Qingwei LUO,Baoguo WANG,Aiwen YI,Kechuan ZHANG,Ze PAN,Shengya ZHANG. Typomorphic Characters and Significance of Pyrite in a Greenstone Belt Type Gold Deposit in Tanzania [J]. Gold Science and Technology, 2019, 27(1): 15-24.
[9] Zilong ZHOU,Yifan WANG,Changtao KE. Reliability Evaluation of Pillars System Based on Domino Failure Effect [J]. Gold Science and Technology, 2018, 26(6): 729-735.
[10] LI Jiafeng, YANG Hongying, TONG Linlin, JIN Zhenan, ZHANG Dengchao. Experimental Study on Bacterial Oxidation-Gold Extraction of Paodaoling Refractory Gold Concentrate [J]. Gold Science and Technology, 2018, 26(2): 248-253.
[11] REN Qi,ZHANG Guocun,WANG Guangwei. Optimization and Practice on Floataion Reagent Dosing Point and Dosage in a Gold Mine of Qinghai Province [J]. Gold Science and Technology, 2017, 25(6): 68-74.
[12] WANG Hao,TIAN Qinghua,XIN Yuntao,GUO Xueyi. Research on the Process of Pretreatment of Refractory Gold Ores Containing Antimony by Ozonation Leaching [J]. Gold Science and Technology, 2016, 24(4): 154-159.
[13] ZHANG Junjie,WANG Shuai,ZHANG Tianqi,LI Chao,LI Hongxu. Study on the New Granulation Technology for Heap Leaching of Gold Ore [J]. Gold Science and Technology, 2016, 24(4): 149-153.
[14] DING Wentao,CAI Chuangkai,GUO Jinyi,XU Xiaoyang. Recovery of Gold and Silver from Pressure Oxidative Slag of Refractory Gold Ore [J]. Gold Science and Technology, 2016, 24(1): 108-112.
[15] LEI Xiaoli,LI Jinquan,XU Zhongmin,DUAN Xixiang. Application of the Technology of Accurate Ball Loading and Addition in Concentrating Mill of Jinchiling Gold Mine [J]. Gold Science and Technology, 2015, 23(6): 87-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!