img

Wechat

Adv. Search

Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (4): 550-558.doi: 10.11872/j.issn.1005-2518.2022.04.005

• Mining Technology and Mine Management • Previous Articles    

Experimental Study on Rock Mechanical Properties Based on L-Type Rebound Instrument

Xianfeng XU(),Pengfei XING,Yong WANG,Suihong WANG   

  1. Nuclear Industry Jingxiang Construction Group Co. ,Ltd. ,Huzhou 313000,Zhejiang,China
  • Received:2021-12-22 Revised:2022-03-31 Online:2022-08-31 Published:2022-10-31

Abstract:

Determining the rock mechanical parameters by static experiments is of great significance for optimizing the open-pit bench blasting scheme and improving the blasting effect.Therefore,the rock mass in an open-pit copper mine in China was taken as the research object,by applying the HM-82L rebound hammer whose impact kinetic energy is 0.735 Nm,a large number of in-situ measurements of rock mass mechanical properties were conducted.Meanwhile,dozens of standard samples were prepared from the on-site rock core.On the one hand,the test of rock longitudinal wave velocity was carried out by using SET-PLT-02 ultrasonic testing instrument,and the uniaxial compression experiment was performed as well based on the MTS-322 hydraulic-servo mechanical testing machine.The result of field rebound measurement indicates that the rebound value of the porphyry at the southern end of the mining area is greater than that of the skarn at the northern end,and the rebound value gradually decreases with the increase of the weathering degree of the rock mass.In addition,the results of indoor physical and mechanical test show that the variation laws of rock wave velocity,uniaxial compressive strength and elastic modulus are generally consistent with the rebound value,it is shown from the fitting curves that there are linear positive correlations between P-wave velocity,uniaxial compressive strength and rebound value,whereas an exponential correlation is generated between elastic modulus and rebound value.All the fitting correlation coefficient indicate that it is reliable to estimate the rock wave velocity and basic mechanical parameters by using the rebound value.The achievements of this study provide a reliable methodology to quickly and reliably obtain the basic physical and mechanical indicators of the rock mass in the open-pit copper mine.

Key words: L-type rebound instrument, wave velocity, laboratory experiment, uniaxial compressive strength, elastic modulus, bench blasting

CLC Number: 

  • TD164

Fig.1

Rebound instrument construction and testing process"

Fig.2

HM-82L type rebound instrument"

Table 1

Parameters of HM-82L type rebound instrument"

参数名称参数值
冲击能量/Nm0.735
锤重/g115
弹簧拉伸长度/mm75
冲击棒半径/mm25
外壳尺寸/mm55×55×250
内存数据/个4 000
单序列最大冲击数99

Fig.3

Field test using rebound instrument"

Fig.4

Rock uniaxial compression test"

Table 2

Original data of rock rebound values of some step measurement points"

测区编号测点1~20回弹值
N-58台阶(强风化矽卡岩)51.041.051.042.032.544.034.538.536.545.4
34.043.539.546.551.042.542.543.562.054.0
N-70台阶(中风化矽卡岩)44.041.539.542.558.552.053.558.545.055.5
37.555.045.038.533.536.051.563.062.545.5
S-70台阶(弱风化斑岩)39.561.560.559.562.050.549.548.558.539.0
45.050.038.033.038.540.050.042.548.545.5
S-82台阶(斑岩)51.552.050.557.543.050.054.065.055.063.0
55.048.052.056.053.552.046.051.546.541.5

Table 3

Physical and mechanical parameters of rock specimens"

采样区域岩样编号直径/mm高度/mm密度/(kg?m-3纵波波速/(m?s-1单轴压缩强度/MPa弹模/GPa
S-82台阶A4-149.20100.212 640.665 030123.3236.31
A4-249.3199.642 661.214 689117.4834.41
A4-449.32100.532 579.194 842116.6633.67
S-70台阶B2-149.7299.642 559.114 32095.5432.98
B2-249.6299.572 445.494 052103.3529.04
B2-349.0899.692 492.944 17989.0327.53
N-70台阶C3-148.53100.092 447.723 63976.2125.82
C3-249.3699.682 394.983 59470.6725.03
C3-349.0599.772 399.413 22775.9824.53
N-58台阶D1-149.28100.222 391.613 35456.7023.42
D1-249.59100.202 218.213 26349.0218.32
D1-349.3498.992 250.343 82263.2115.72

Fig.5

Rock failure pattern"

Fig.6

Relationship curve between P-wave velocity and rebound value of rock"

Fig.7

Relationship between uniaxial compressive strength,elastic modulus and rebound value of rock"

Aydin A, Basu A,2005.The Schmidt Hammer in rock material characterization[J].Engineering Geology,81(1):1-14.
Bilgin N, Copur H, Balci C,2016.Use of Schmidt Hammer with special reference to strength reduction factor related to cleat presence in a coal mine[J].International Journal of Rock Me-chanics & Mining Sciences,84:25-33.
Chen Xuesong, Renze Ou, Lin Weixing,et al,2021.Research on the influence of blasting parameter optimization on block size control[J].Mining Technology,21(6):134-137.
Cheng R S, Zhou Z L, Chen W S,et al,2022.Effects of axial air deck on blast-induced ground vibration[J].Rock Mechanics and Rock Engineering,55:1037-1053.
Dai Lin, Li Siwei,2021.Numerical simulation of blasting parameters optimization in Heishan open-pit mine[J]. Blasting,38(4):101-107.
Day M J, Goudie A S,1977.Field assessment of rock hardness using the Schmidt test hammer[J].British Geomorphological Research Group Technical Bulletin,18:19-29.
Ding Huangping, Nai Lei, Zhang Zhenying,2008.Research on relativity to point loading test and rebound test on compression strength of rock[J].Subgrade Engineering,28(5):70-71.
Gao Wangqing, Li Cao,2021.Experimental research on concrete strength curve of rebound method in Guangzhou area[J].Construction Quality,39(7):47-51.
Gu H L, Tao M, Li X B,et al,2019.The effects of water content and external incident energy on coal dynamic behaviour[J].International Journal of Rock Mechanics and Mining Sciences,123:104088.
Jin Peng, Liu Kewei, Li Xudong,et al,2021.Numerical simulation study of crack propagation in deep rock mass under water-coupling blasting[J].Gold Science and Technology,29(1):108-119.
Kang Houjin,2021.Influence control of subway station construction on environment in complex environment [J].Highway,66(8):359-366.
Li Qiyue, Zhao Xinhao, Wei Xin’ao,et al,2019.Study and application of contour control blasting technology for large section tunnel[J].Gold Science and Technology,27(3):350-357.
Li Xianglong, Zhang Qihu, Wang Jianguo,et al,2021.Experimental study on precise delay hole-by-hole blasting vibration reduction of underground blasting[J].Gold Science and Technology,29(3):401-410.
Long Deyu, Qiu Enxi, Shi Yue,2010.Study on relationship between uniaxial compressive strength and resilience strength of red beds[J].Subgrade Engineering,(3):185-187.
Ma Junjie, Huang Yonghui, Zhang Zhiyu,et al,2021.Optimization study of blasting parameters in an underground mining site of a tin mine[J].Nonferrous Metals Engineering,11(12):93-99.
Pga A, Am A, Mh B,et al,2021.Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks[J].Transportation Geotechnics,29:1-14.
Qiu Sijian, Yang Zeping, Liang Haian,2021.Experimental study on uniaxial compressive strength of Danxia formation clastic rocks in northern guangdong based on N-type schmidt hammer[J].Science Technology and Engineering,21(1):290-296.
Wang Kaidi,2020a.Test and Analysis of Rock Strength by Rebound Method[D].Hefei:Hefei University of Technology.
Wang Kaidi,2020b.Analysis of current situation of research on rebound testing of rock strength[J].Scientific and Technological Innovation Information,(30):129-130.
Wang Rui, Meng Yaoyao, Ren Dandan,et al,2018.Fast forecasting of rock strength based on the ultrasonic-rebound comprehensive method[J].Journal of Railway Engineering Society,35(10):27-31,48.
Xiong Pengfei, Liang Chunhua,2019.Research on concrete strength test under rebound test and compression test [J].Scientific and Technological Innovation Information,(4):129-130.
Yuan Guangxiang, Wang Pengjiao, Li Jianyong,et al,2017.Schmidt hammer test methods for rock core[J].China Measurement & Testing Technology,43(9):35-41.
Zhao H T, Tao M, Li X B,et al,2019.Estimation of spalling strength of sandstone under different pre-confining pressure by experiment and numerical simulation[J].International Journal of Impact Engineering,133:103359.
陈学松,欧任泽,林卫星,等,2021.爆破参数优化对块度控制的影响研究[J].采矿技术,21(6):134-137.
戴林,李思维,2021.黑山露天矿爆破参数优化数值模拟研究[J].爆破,38(4):101-107.
丁黄平,佴磊,张振营,2008.岩石抗压强度点荷试验与回弹试验相关性研究[J].路基工程,28(5):70-71.
高望清,李操,2021.广州地区回弹法检测高强混凝土强度测强曲线试验研究[J].工程质量,39(7):47-51.
金鹏,刘科伟,李旭东,等,2021.深部岩体水耦合爆破裂纹扩展数值模拟研究[J].黄金科学技术,29(1):108-119.
康后金,2021.复杂环境下地铁车站施工对环境的影响控制[J].公路,66(8):359-366.
李启月,赵新浩,魏新傲,等,2019.大断面隧道轮廓控制爆破技术研究与应用[J].黄金科学技术,27(3):350-357.
李祥龙,张其虎,王建国,等,2021.地下爆破精确延时逐孔起爆减振试验研究[J].黄金科学技术,29(3):401-410.
龙德育,邱恩喜,石岳,2010.红层单轴抗压强度与回弹强度相关关系研究[J].路基工程,(3):185-187.
马俊杰,黄永辉,张智宇,等,2021.某锡矿地下采场爆破参数优化研究[J].有色金属工程,11(12):93-99.
邱思检,杨泽平,梁海安,2021.基于N型回弹仪的粤北丹霞组碎屑岩单轴抗压强度试验研究[J].科学技术与工程,21(1):290-296.
王凯笛,2020a.岩石强度的回弹法测试与分析[D].合肥:合肥工业大学.
王凯笛,2020b.岩石强度的回弹测试研究现状分析[J].科学技术创新,(30):129-130.
王睿,孟尧尧,任兆丹,等,2018.基于声波—回弹联合法的岩石强度快速预测[J].铁道工程学报,35(10):27-31,48.
熊鹏飞,梁春华,2019.回弹检测及抗压试验下混凝土强度试验研究[J].科学技术创新,(4):129-130.
袁广祥,王朋姣,李建勇,等,2017.岩芯回弹测试方法[J].中国测试,43(9):35-41.
[1] Long HAI,Bo XU,Xin ZHAO. Optimization of Aggregate Gradation of Paste Filling Material Prepared by Construction Waste [J]. Gold Science and Technology, 2021, 29(4): 573-581.
[2] Biwei HU, Tubing YIN, Xibing LI. Experimental Study on Mechanical Impact Breaking Rock with Microwave Radiation [J]. Gold Science and Technology, 2020, 28(4): 521-530.
[3] Chunzhi GUO,Chunde MA,Yanan ZHOU,Zelin LIU,Shan LONG. Research on Quantitative Characterization Method of Rock Energy Storage Based on Wave Velocity Measurement [J]. Gold Science and Technology, 2019, 27(2): 223-231.
[4] WANG Jin, GONG Fengqiang. Study On Rate Effect of Uniaxial Compression Test for Red Sandstone [J]. Gold Science and Technology, 2018, 26(1): 56-63.
[5] LI Jinling,WANG Liguan,CHEN Xin. Ore Loss and Dilution Control System at Ore-rock Border for Open Pit Bench Blasting [J]. Gold Science and Technology, 2016, 24(3): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!