img

Wechat

Adv. Search

Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (3): 324-332.doi: 10.11872/j.issn.1005-2518.2022.03.105

Previous Articles    

Stability Numerical Analysis and Safety Classification Evaluation of Complex Goaf Group

Keping ZHOU1(),Lixiong CAO1,Jielin LI1(),Wei ZHANG2,Chengye YANG1,Xiaoping ZHANG3,Le GAO1   

  1. 1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2.Yuxi Dahongshan Mining Co. , Ltd. , Yuxi 653405, Yunnan, China
    3.Tianhe Daoyun(Beijing) Technology Co. , Ltd. , Beijing 100176, China
  • Received:2021-08-12 Revised:2022-04-05 Online:2022-06-30 Published:2022-09-14
  • Contact: Jielin LI E-mail:Kpzhou@vip.163.com;lijielin@163.com

Abstract:

Goaf has become a major hidden danger affecting mine safety production.In order to accurately analyze the stability of complex goaf group and strengthen the safety control of goaf group in mine,based on the fine detection data of goaf group in a mine,a coupling modeling and numerical simulation analysis method of Geomagic,Midas GTS and FLAC3D was adopted to analyze the stability of complex goaf group.At the same time,the safety classification evaluation system of complex goaf group was established based on 16 indicators such as goaf type,rock compressive strength and exposed area,and the safety classification evaluation of complex goaf group was carried out.The results show that there are caving hazards in the hanging wall and southeastern roof of large ore body goaf.The ‘springboard’ rockmass in the northwest of the panel-5 will be deformed greatly in the process of residual ore mining.There is great stress concentration in the inter-pillar separated by each goaf in the main mining area.Combined with the safety classification evaluation results of goaf,the treatment measures of each goaf are proposed.The research results provide reference for the stability analysis and safety classification evaluation of mined-out areas in similar mines.

Key words: goaf group, coupling modeling, stability analysis, safety classification evaluation, risk assessment, matter-element extension evaluation model

CLC Number: 

  • TD325.3

Fig.1

Construction of 3D solid model of goaf and roadway by 3D laser scanning technology"

Fig.2

Delineation of spatial area of actual-measured goaf"

Fig.3

Triangulation plate homogenization"

Fig.4

Numerical model construction"

Table 1

Physical and mechanical parameters of rock mass"

岩石类别物理力学指标
弹性模量/GPa泊松比内聚力/MPa内摩擦角/(°)单轴抗拉强度/MPa密度/(kg·m-3
围岩11.2210.212.67950.290.352.93
矿体14.9640.233.54547.150.413.05

Fig.5

Numerical analysis results of goaf stability"

Fig.6

Stress appearance in the 790 m level"

Fig.7

Principle of goaf safety grading evaluation"

Table 2

Influence index of goaf stability"

指标类型指标名称指标描述
定性指标采空区类型采矿方法、形成与处理时间、存在形态
地质构造断层、褶皱、裂隙分布特征
岩体结构结构面和结构体形状、规模、性质
围岩支护围岩支护方式
顶板特征顶板形状、支护措施
地表特征地表变形、塌陷沉降、防洪、围岩垮落及安全防护
水文因素空区内水文地质特征
相邻空区分布周边采空区群或独立采空区分布
工程布置运输、采准、切割巷道及采场布置
定量指标采空区规模独立采空区体积
埋深承压围岩之间的水平距离
高跨比跨度与高度比值
暴露面积空区水平面投影面积
矿柱安全系数矿柱稳定程度
岩石抗压强度岩石坚硬程度
岩石质量标准岩体被各种结构面切割的程度

Table 3

Safety rating of goaf"

危险度等级治理方案
一级采用充填法处理采空区,主要为废石充填、 移动式泵送充填、废石胶结充填
采用崩落法处理,如果围岩较为稳固, 视情况强制崩落
二级采用崩落法处理
采用充填法处理
三级封闭处理采空区
加固、支撑顶板
构筑阻波墙,减少冲击波危害
四级设置警示线、封闭采空区

Table 4

Goaf classification summary"

序号采空区编号分级处理方式(建议)
1730 m中段一盘区采空区三级封闭、后期视情况充填
2775 m中段零盘区采空区四级封闭、后期视情况充填
3775 m中段一盘区采空区三级充填
4790 m低品位矿体采空区群(7个)四级封闭、后期视情况充填
5805 m中段一盘区采空区三级充填
6805 m低品位矿体采空区群(6个)四级封闭、后期视情况充填
7835 m中段一盘区采空区三级充填
8835 m中段二盘区采空区三级充填
9大矿体采空区一级构筑阻波墙后充填
10五盘区采空区二级在710 m中段底部出矿口构筑阻波墙后充填
Cheng Li, Liu Huanxin, Zhu Mingde,et al,2020.Current situation and prospect of research on underground goaf in metal mines[J].Gold Science and Technology,28(1):70-81.
Deng Hongwei, Wang Yuan, Xu Yihui,2018.Study on space structure evolution of large and complicated underground goaf [J].Journal of Disater Prevention and Mitigation Engineering,38(3):401-408.
Deng Hongwei, Zhang Weiyou, Yu Songtao,et al,2020.Two dimensional evaluation model of goaf stability based on variable weight contact cloud[J].Gold Science and Technology,28(1):32-41.
Guo Qing, Zhang Wei, Li Jielin,et al,2021 Application of UAV 3D laser scanning technology in Dahongshan iron mine [J].Modern Mining,37(3):160-162.
Hao Xubin, Yang Lihui, Wan Sheng,2013.Stability evaluation for mine gob areas based on AHP and fuzzy synthetic judgement theory [J].Gold Science and Technology,21(6):63-67.
Jia Sanshi, Fu Jianfei, Yekai Men,et al,2019.Three-D laser scanning approach to the concealed goaf under an open-pit iron mine[J].Journal of Safety and Environment,19(5):1581-1586.
Jia Sanshi, Fu Jianfei, Wang Ende,et al,2020.Geophysical prospecting and evaluation of goaf in open-pit iron mine based on fuzzy mathematics[J].Metal Mine,49(1):63-72.
Li Jielin, Yang Chengye, Hu Yuan,et al,2020.Application research of UAV-Lidar in detection of underground goaf[J].Metal Mine,49(12):168-172.
Li Qun, Li Zhanjin, Li Li,2014.3D Laser scanning detecting technology and stability analysis of goaf[J]. Metal Mine,43(12):181-184.
Liu Xiaoming, Luo Zhouquan, Yang Biao,et al,2010.Numerical modeling and geological body visualization for complex mine[J].Rock and Soil Mechanics,31(12):4006-4010.
Liu Yang, Li Kegang, Li Mingliang,et al,2020.Study on the stability of mined-out area based on AHP-fuzzy evaluation [J].Nonferrous Metals Engineering,10(11):114-119.
Luo X X, Wang Z T, Fu J,et al,2019.A method for evaluating the risk of ground collapse in goaf based on unascertained measure[C]//2019 IEEE International Conference on Signal Processing,Communications and Computing (ICSPCC).New York:IEEE.
Shiqing Nan, Yang Nan,2012.Group stability analysis for goaf in transform from strip mining to underground mining based on CMS actual measuring[J].Hebei Metallurgy,1(8):10-15.
Song Weidong, Fu Jianxin, Du Jianhua,et al,2012.Analysis of stability of goaf group in metal mines based on precision detection[J].Rock and Soil Mechanics,33(12):3781-3787.
Wang Wei, Luo Zhouquan, Xiong Lixin,et al,2015.Research of goaf stability evaluation based on improved matter-element extension model [J].Journal of Safety and Environment,15(1):21-25.
Wang Zhengshuai, Liu Bingjing, Deng Kazhong,2016.Fuzzy extension assessment model of old goaf stability [J].Chinese Journal of Underground Space and Engineering,12(2):553-559.
Xiao H P, Guo G L, Liu W,2017.Hazard degree identification and coupling analysis of the influencing factors on goafs[J].Arabian Journal of Geosciences,10(3):1-16.
Yu Zhengfang, Hu Yuan, Zhang Wei,et al,2021.Fine detection and stability analysis of II-1 head goaf in Dahongshan iron mine[J].Modern Mining,37(4):189-192.
Zhang Rui, Deng Hongwei,2018.Study on stability evaluation and classification of complex goafs group based on multiple evaluation methods[J].Metal Mine,47(10):18-23.
Zhu Biyong,2014.Evaluation on risk level of goaf based on entropy-weight and matter-element extenics model [J].Journal of Safety Science and Technology,10(11):180-186.
程力,刘焕新,朱明德,等,2020.金属矿山地下采空区问题研究现状与展望[J].黄金科学技术,28(1):70-81.
邓红卫,王远,徐宜慧,2018.大型复杂采空区空间结构演化规律研究[J].防灾减灾工程学报,38(3):401-408.
邓红卫,张维友,虞松涛,等,2020.基于变权联系云的采空区稳定性二维评价模型[J].黄金科学技术,28(1):32-41.
郭庆,张玮,李杰林,等,2021.无人机三维激光扫描技术在大红山铁矿的应用[J].现代矿业,37(3):160-162.
郝旭彬,杨立辉,万胜,2013.基于AHP及模糊综合评判法的采空区稳定性评价[J].黄金科学技术,21(6):63-67.
贾三石,付建飞,门业凯,等,2019.深凹露天铁矿隐伏空区三维激光探测技术方法应用研究[J].安全与环境学报,19(5):1581-1586.
贾三石,付建飞,王恩德,等,2020.基于模糊数学的露天铁矿采空区地球物理探测评价研究[J].金属矿山,49(1):63-72.
李杰林,杨承业,胡远,等,2020.无人机三维激光扫描技术在地下采空区探测中的应用研究[J].金属矿山,49(12):168-172.
李群,李占金,李力,2014.空区三维激光探测技术及稳定性分析[J].金属矿山,43(12):181-184.
刘晓明,罗周全,杨彪,等,2010.复杂矿区三维地质可视化及数值模型构建[J].岩土力学,31(12):4006-4010.
刘洋,李克钢,李明亮,等,2020.基于AHP-模糊评价的采空区稳定性研究[J].有色金属工程,10(11):114-119.
南世卿,杨楠,2012.基于CMS实测的露天转地下开采采空区群稳定性分析[J].河北冶金,1(8):10-15.
宋卫东,付建新,杜建华,等,2012.基于精密探测的金属矿山采空区群稳定性分析[J].岩土力学,33(12):3781-3787.
汪伟,罗周全,熊立新,等,2015.基于改进物元可拓模型的采空区稳定性评价[J].安全与环境学报,15(1):21-25.
王正帅,刘冰晶,邓喀中,2016.老采空区稳定性的模糊可拓评价模型[J].地下空间与工程学报,12(2):553-559.
余正方,胡远,张玮,等,2021.大红山铁矿Ⅱ-1头部采空区精细探测与稳定性分析[J].现代矿业,37(4):189-192.
张瑞,邓红卫,2018.基于多种评价方法的复杂采空区群稳定性评价与分级研究[J].金属矿山,47(10):18-23.
朱必勇,2014.基于熵权物元可拓模型的采空区危险等级评价[J].中国安全生产科学技术,10(11):180-186.
[1] Jielin LI,Le GAO,Chengye YANG,Keping ZHOU. Numerical Analysis of Stability of Large Complex Goaf Group and Prediction of Hidden Danger Area [J]. Gold Science and Technology, 2022, 30(3): 315-323.
[2] Qinli ZHANG, Yibo YU, Daolin WANG. Stability Analysis and Evaluation of Filling Cantilever Structure in Longshou Mine [J]. Gold Science and Technology, 2022, 30(2): 254-262.
[3] Li CHENG,Huanxin LIU,Mingde ZHU,Qinzheng WU. Current Situation and Prospect of Research on Underground Goaf in Metal Mines [J]. Gold Science and Technology, 2020, 28(1): 70-81.
[4] Shijiao YANG,Zhihui WANG. Numerical Simulation on Stability of Shallow-buried Goaf Group with Overlying Highway [J]. Gold Science and Technology, 2019, 27(4): 505-512.
[5] Xuebin XIE,Huchen XIONG,Herong XIE,Jiankun LI,Tingyu TIAN. Catastrophic Instability Model of Goaf Group System Considering Horizontal Loads [J]. Gold Science and Technology, 2019, 27(3): 368-377.
[6] Zhongyuan GU,Keping ZHOU. Study on Time-Variant Mechanics Properties of Shallow Goaf Group Based on Creep Experiment [J]. Gold Science and Technology, 2018, 26(4): 511-519.
[7] BAI Zhaoyang,WANG Guowei,ZHANG Peng,LIU Shuanping. Research on Pillaring Blasting Location Under Level Gob Group Conditions [J]. Gold Science and Technology, 2017, 25(4): 81-86.
[8] CHEN Jianhong,QIN Caoyuan,DENG Dongsheng. Risk Assessment of Bedded Rock Roadway Roof Fall Based on AHP and Matter-Element TOPSIS Method [J]. Gold Science and Technology, 2017, 25(1): 55-60.
[9] SUN Yang,LUO Liming,DENG Hongwei. Stability Analysis and Parameter Optimization of Stope in Deep Metal Mines [J]. Gold Science and Technology, 2017, 25(1): 99-105.
[10] CHEN Jianhong,SONG Can,WU Shuliang,LI Qianwei. Assessment and Risk Control of Tunnel Collapse Based on the Improved Unascertained Measure Model [J]. Gold Science and Technology, 2016, 24(6): 64-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!