img

Wechat

Adv. Search

Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (1): 122-130.doi: 10.11872/j.issn.1005-2518.2022.01.069

• Mining Technology and Mine Management • Previous Articles     Next Articles

Experimental Study and Application of Grinding Medium Ratio Optimization in Jiaojia Gold Mine

Chengyu YI1(),Yingjie PEI2(),Shuai MA3   

  1. 1.Jiaojia Gold Mine, Shandong Gold Mining (Laizhou) Co. , Ltd. , Laizhou 261441, Shandong, China
    2.School of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
    3.State Key Laboratory for Clean Utilization of Complex Nonferrous Metal Resources, Kunming 650093, Yunnan, China
  • Received:2021-06-03 Revised:2021-11-06 Online:2022-02-28 Published:2022-04-25
  • Contact: Yingjie PEI E-mail:ycy1968513@126.com;z179180802@163.com

Abstract:

Gold has been widely used because of its easy forging and corrosion resistance,and it promotes the development of daily life,industry and global economy. Gold ore separation is mainly composed of raw ore crushing,grinding classification,flotation and concentration. The quality of grinding products is directly determined by the addition system of grinding medium,which affects the beneficiation index and the economic benefit of the concentrator. Grinding operation is an important part of gold recovery. The optimization of grinding medium system can effectively improve the quality of grinding products,and make more qualified fractions enter the flotation process,which is beneficial to the separation and enrichment of gold mines. There are some problems in the first-stage grinding workshop of Jiaojia gold mine,such as high unit ball consumption of ball mill,low grinding efficiency and unreasonable particle size composition of grinding products,which greatly affect the normal production situation and separation index of concentrator and lead to low economic benefits of mine. In order to solve the above problems,this paper optimized the grinding medium addition system of ball mill to improve the quality of grinding products. The mechanical properties of ore were determined and the particle size composition of ore was screened. Based on the mechanical properties of ore and the particle size distribution of grinding cycle products,the medium ratio of the recommended scheme was calculated by Duan's semi-theoretical formula of spherical diameter as Φ90∶Φ70∶Φ50∶Φ40∶Φ30=15∶25∶20∶15∶25. In addition,four groups of schemes,i.e.,field scheme,recommended scheme,oversize scheme and undersize scheme,were tested in laboratory grinding contrast test and grinding contrast test under different sand return ratio in a discontinuous Φ450×450 mm ball mill in laboratory. The yield of roughing grade,easy-to-select grade,optional grade and superfine grade were taken as evaluation indexes. Finally,the initial ball loading scheme was determined as follows:Φ90∶Φ70∶Φ50∶Φ40∶Φ30=15∶25∶20∶15∶25.The industrial test of 3# mill (MQG2736) in Jiaojia gold mine was started on October 26,2016. After the industrial test,the content of -0.074 mm in ore discharge of No.3 mill increased by 4.06%,the content of +0.30 mm decreased by 5.64%,and the processing capacity of No.3 mill increased by 6.42% during the industrial test period. This shows that the recommended ball ratio scheme is more suitable for increasing the content of middle easy-to-choose fraction and reducing the content of over-crushed fraction than before the industrial test,which can effectively increase the output per hour,and has certain reference significance for similar mines.

Key words: medium ratio, mill processing capacity, grinding product quality, grinding optimization, concentrator, Jiaojia gold mine

CLC Number: 

  • TD921+

Table 1

Determination results of mechanical properties of the ores in Jiaojia gold mine"

编号矿石密度/(g·cm-3单轴抗压强度/MPa平均强度/MPa割线弹性模量E50/(×104 MPa)E50平均值割线泊松比U50U50平均值
1#矿块2.7272.4080.501.221.200.430.37
88.201.140.34
80.801.240.33
2#矿块2.8867.2066.701.041.210.280.28
70.001.250.26
62.801.340.31
3#矿块2.7869.2072.401.031.090.320.32
71.201.070.33
76.801.170.32

Table 2

Particle size composition of Jiaojia gold ore grinding cycle products"

粒级/mm球磨机给矿旋流器沉砂旋流器溢流球磨机排矿
产率/%正累积产率/%产率/%正累积产率/%产率/%正累积产率/%产率/%正累积产率/%
合计100.00-100.00-100.00-100.00-
+15.000.290.29------
15.00~12.004.124.410.160.16----
12.00~8.0018.3822.791.401.56--0.560.56
8.00~5.0032.5955.384.265.82--2.312.87
5.00~2.506.0561.432.308.12--2.765.63
2.50~0.9013.2174.648.2816.400.020.027.9413.57
0.90~0.457.8582.4917.0333.430.420.4415.0528.62
0.45~0.304.0886.5719.6653.093.123.5617.3245.94
0.30~0.202.2288.7912.3965.486.4410.0011.5457.48
0.20~0.152.7491.5313.5379.0115.6325.6314.4171.89
0.15~0.101.0692.594.4383.448.8334.464.9576.84
0.10~0.0741.0093.593.7987.239.4243.884.2281.06
0.074~0.0381.6995.284.3891.6116.1660.043.5484.60
0.038~0.0191.3896.662.5294.1311.3971.436.5091.10
0.019~0.0101.0597.711.8195.9410.3881.813.2594.35
-0.0102.29100.004.06100.0018.19100.005.65100.00

Table 3

Calculation table of initial ball ratio of ball mill"

级别/mm

全给矿产率

/%

扣除-0.30 mm后待磨产率γ待/%各组适宜球径/mm

推荐球比

/%

合计100.00100.00-100.00
+8.0012.1915.799015
8.00~5.0018.4323.897025
5.00~0.9014.9219.345020
0.90~0.4512.4416.124015
0.45~0.3019.1824.863025
-0.3022.84---

Table 4

Initial assembly plan of ball mill steel balls"

方案介质配比平均球径/mm
推荐方案Φ90∶Φ70∶Φ50∶Φ40∶Φ30=15∶25∶20∶15∶2554.50
现场方案Φ100∶Φ80∶Φ60∶Φ40=20∶20∶40∶2068.00
偏大方案Φ90∶Φ70∶Φ50∶Φ40=20∶20∶40∶2060.00
偏小方案Φ80∶Φ60∶Φ40∶Φ30=20∶20∶40∶2050.00

Table 5

Comprehensive index of grinding test results under the condition of sand return ratio 400%"

方案γ+0.30mm/%γ-0.15+0.038mm/%γ-0.038mm/%γ-0.074mm/%
推荐方案1.1436.0342.8059.42
现场方案4.5432.4437.7452.81
偏大方案2.1733.3441.3056.52
偏小方案1.3836.7843.8360.21

Table 6

Comprehensive index of grinding test results under the condition of sand return ratio 100%"

方案γ+0.30mm/%γ-0.15+0.038mm/%γ-0.038mm/%γ-0.074mm/%
推荐方案2.1836.8338.0057.33
现场方案6.7732.2835.1350.71
偏大方案3.7334.7236.9054.47
偏小方案2.1936.9241.0958.40

Table 7

Recommended schemes and on-site schemes:Metal distribution rate in each grade of grinding products"

粒级

/mm

推荐方案现场方案

产率

/%

品位

/(×10-6

分布率

/%

产率

/%

品位

/(×10-6

分布率

/%

合计100.002.94100.00100.002.94100.00
0.90~0.450.450.300.050.600.400.08
0.45~0.301.731.200.716.171.202.52
0.30~0.208.683.5010.4813.282.4010.85
0.20~0.1513.316.1027.6212.542.5010.67
0.15~0.1014.273.4016.7313.143.3014.75
0.10~0.0744.235.808.343.563.504.24
0.074~0.03818.333.4021.2015.584.2022.26
0.038~0.01911.641.907.5210.293.6012.60
0.019~0.0109.071.304.018.161.604.44
-0.01018.290.603.7416.683.1017.59

Table 8

Comparison of ore discharge particle size of 3# mill before and after industrial test"

试验阶段时间-0.074 mm/%+0.30 mm/%
工业试验前2016年3月18.9445.94
工业试验后2016年11月8日25.1934.15
2016年11月15日22.0642.12
2016年11月22日21.7544.64
均值23.0040.30

Fig.1

Comparison of the average value of ore discharge particle size of 3# mill before and after the industrial test"

Table 9

Particle size composition of 3# ball mill overflow products before and after industrial test"

粒级/mm工业试验前工业试验后
产率/%正累积产率/%负累积产率/%产率/%正累积产率/%负累积产率/%
总和100.00--100.00--
0.305.535.53100.004.044.04100.00
0.30~0.1525.1730.7094.4725.8229.8695.96
0.15~0.1010.5841.2869.3010.6840.5470.14
0.10~0.0749.9351.2158.724.2544.7959.46
0.074~0.03814.9766.1848.7922.0266.8155.21
-0.03833.82100.0033.8233.19100.0033.19

Fig. 2

Comparison of particle size index of 3# ball mill overflow products before and after industrial test"

Table 10

Processing capacity of 3# ball mill before and after industrial test"

日期工业试验前工业试验后
运行时间/h总处理量/t平均处理量/(t·h-1运行时间/h总处理量/t平均处理量/(t·h-1
平均值4 068.35141 461.9734.773 824.45138 177.1936.13
2016-05-06至2016-05-20343.4011 579.5333.72608.0019 839.2132.63
2016-05-21至2016-06-20736.0025 918.6035.22720.0026 494.9036.80
2016-06-21至2016-07-20720.0025 284.5335.12744.0027 495.0836.96
2016-07-21至2016-08-20744.0025 972.1934.91702.4524 822.6435.34
2016-08-21至2016-09-20725.9525 075.9134.54672.0025 525.0237.98
2016-09-21至2016-10-24799.0027 631.2134.58378.0014 000.3437.04

Table 11

Processing capacity of 3# ball mill before and after industrial test"

时间

总处理量

/t

运行时间

/h

每小时处理量/(t·h-1处理量提高率/%
2016-05-21至2016-10-24129 882.443 724.9534.87-
2016-11-21至2017-04-05106 667.522 874.0037.116.42

Table 12

Economic benefits of concentrator of Jiaojia gold mine after industrial test"

年份

/年

新增产值/万元新增利税/万元新增利润/万元节资总额/万元总效益/万元
累计51 470.2519 429.9032 040.351 045.3733 085.72
20169 663.093 647.826 015.27204.416 219.68
201711 308.824 269.107 039.72209.967 249.68
20189 885.713 731.866 153.85207.156 361.00
201910 078.713 804.576 274.14212.116 486.25
202010 533.923 976.556 557.37211.746 769.11
Bor A, Jargalsaikhan B, Uranchimeg K, al et,2021. Particle morphology control of metal powder with various experimental conditions using ball milling[J]. Powder Technology,(394):181-190.
Cao Y, Tong X, Xie X, al et,2021. Effects of grinding media on the flotation performance of cassiterite[J]. Minerals Engineering,(168):106919.
Duan Xixiang,1997. Research on the modification of the theoretical formula of the sphere and half of the sphere[J].Science in China Series E:Technical Science,(6):510-515.
Huang P, Ding Y F, Wu L, al et,2019. A novel approach of evaluating crushing energy in ball mills using regional total energy[J]. Powder Technology,(355):289-299.
Li Hongsong,2019. Study on causes and preventive methods of low desorption rate of gold loaded carbon [J]. China Metal Bulletin,(3):176-178.
Li Liang, Wang Shanshan,2018. Suggestions on gold resources tax legislation of China [J]. Land Resources Information,( 9):18-23.
Liu Qing, Peng Liangzhen, Wang Bao, al et,2015. Effects of different size and proportion of steel balls on grinding size in ball mill[J].Nonferrous Metals (Mineral Processing Se-ction),(6):68-73.
Pei Yingjie, Xiao Qingfei, Zhang Qian, al et,2021. Optimizing yield comparison of an iron ore fine grinding intermediate grain size by orthogonal test method and response surface method[J].Bulletin of the Chinese Ceramic Society,40(4):1304-1311.
Tang Shaoyu, Xu Guodong, Deng Xingxing, al et,2020. Experimental study on mineral processing of a gold mine in Lixian County,Sichuan Province[J].Sichuan Nonferrous Metals,(3):11-14.
Tang Xinmin,2016. Automation and energy saving transformation of grinding production information in Dongguashan Copper Mine[J]. Mining Equipment,(5):48-54.
Wang Yong, Sun Yaming,2020. Experimental study on selective grinding performance in Vanadium-Titanium Magnetite Ore in Panzhihua[J]. Mining Research and Development,40(11):156-159.
Wu Caibin, Zhou Yichao, Cheng Changmin, al et,2016. Analysis of different contact ways of grinding media in grinding kinetics in Tungsten [J]. Nonferrous Metal Engineering,6(4):58-62.
Wu Guiyi, An Zhandong, Xue Gangqin, al et,2018. Effect of ball size distribution on grinding dynamics of iron ore particles [J]. Nonferrous Metal Engineering,8(3):95-99.
Xiao Qingfei, Li Guihai, Shi Guiming, al et,2007. Application of accurate ball loading and addition in Shizishan copper mine [J]. Metal Mine,36(12):68-71.
Yang Jinlin, Mo Fan, Zhou Wentao, al et,2017. Review of research on selective grinding [J]. Multipurpose Utilization of Mineral Resources,(5):1-6.
Yu Haokai, Wang Xiao, Li Jishun, al et,2020. Study on relationship between grinding medium size and grinding efficiency of ball mill[J]. Mining & Processing Equipment,48(3):32-37.
Yu J W, Jin S H, Raju K, al et,2021. Analysis of individual and interaction effects of processing parameters on wet grinding performance in ball milling of alumina ceramics using statistical methods[J].Ceramics International,47(22):31202-31213.
Yuan Chengfang, Xiong Yanfang, Tong Jiaqi, al et,2019. Study on copperflotation with ultrafine grinding from a copper slag[J].Non-ferrous Metals (Mineral Processing Section),(5):56-62.
Zhang Qian, Xiao Qingfei, Yang Sen, al et,2020. Experimental research on quality optimization of ball mills in Kalatonk Copper-Nickel Ore [J]. Multipurpose Utilization of Mineral Resources,(4):100-105.
Zhao Yaoqing, Wang Jia,2018. Experimental study on the recovery of tailings gold from a certain gold mine in Shandong province[J].World Nonferrous Metals,(17):186-187.
Zhou Qingli, Bai Limei, Ma Yuxin, al et,2020. Experimental study on optimization of vibration grinding parameters by response surface method[J]. Multipurpose Utilization of Mineral Resources,(5):203-208,44.
段希祥,1997.球径半理论公式的修正研究[J].中国科学E辑:技术科学,(6):510-515.
李洪松,2019.载金炭解吸率低原因及预防方法研究[J].中国金属通报,(3):176-178.
李亮,王珊珊,2018.对我国黄金资源税立法的若干思考[J].国土资源情报,(9):18-23.
刘青,彭良振,王宝,等,2015.介质的尺寸和配比对球磨机磨矿粒度影响的研究[J].有色金属(选矿部分),(6):68-73.
裴英杰,肖庆飞,张谦,等,2021.正交试验法及响应曲面法优化某铁矿细磨中间粒级产率的对比试验[J].硅酸盐通报,40(4):1304-1311.
唐劭禹,徐国栋,邓星星,等,2020.四川理县某金矿选矿试验研究[J].四川有色金属,(3):11-14.
唐新民,2016.冬瓜山铜矿磨矿生产信息自动化节能改造[J].矿业装备,(5):48-54.
王勇,孙亚明,2020.攀枝花钒钛磁铁矿选择性磨矿性能试验研究[J].矿业研究与开发,40(11):156-159.
吴彩斌,周意超,程长敏,等,2016.不同接触方式磨矿介质的钨矿磨矿动力学分析[J].有色金属工程,6(4):58-62.
吴桂义,安站东,薛钢琴,等,2018.钢球级配对铁矿石的磨矿动力学研究[J].有色金属工程,8(3):95-99.
肖庆飞,李桂海,石贵明,等,2007.精确化装补球法在狮子山铜矿的应用[J].金属矿山,36(12):68-71.
杨金林,莫凡,周文涛,等,2017.选择性磨矿研究概述[J].矿产综合利用,(5):1-6.
于浩凯,王晓,李济顺,等,2020.磨介粒径与球磨机磨矿效率关系研究[J].矿山机械,48(3):32-37.
袁程方,熊艳芳,童佳琪,等,2019.采用超细磨矿回收水淬铜渣试验研究[J].有色金属(选矿部分),(5):56-62.
张谦,肖庆飞,杨森,等,2020.喀拉通克铜镍矿球磨机磨矿作业质量优化试验研究[J].矿产综合利用,(4):100-105.
赵钥庆,王佳,2018.山东某金矿选矿尾渣金的再回收试验研究[J].世界有色金属,(17):186-187.
周庆立,白丽梅,马玉新,等,2020.响应曲面法优化振动磨磨矿工艺参数试验研究[J].矿产综合利用,(5):203-208,44.
[1] CHEN Qiao,YANG Hongying,CHEN Guimin,TONG Linlin,NIU Huiqun. Application of Knelson Gravity Concentration in Quartz Vein Type Gold Beneficiation Process in China [J]. Gold Science and Technology, 2017, 25(5): 73-79.
[2] XIAO Jun,DONG Yanhong. Experimental Study on a Quartz-vein Type Gold Ore Using Knelson Centri-fugal Concentrator [J]. Gold Science and Technology, 2015, 23(6): 92-96.
[3] ZHANG Xiaofei,WU Rongze,SHI Qing,NIU Shuyin,SUN Aiqun,ZHANG Fuxiang. Comparative Study on Ore-forming and Ore-controlling Structures at Ling-long Gold Mine and Jiaojia Gold Mine in Jiaodong Region [J]. Gold Science and Technology, 2015, 23(5): 14-19.
[4] WANG Ping,CHEN Guimin. Baolun Gold Deposit Gravity Separation Process Optimization and Table Concentrator Unattended Remote Operation [J]. Gold Science and Technology, 2014, 22(1): 60-63.
[5] REN Hongwen,LIU Zhaofu,HAN Zhirao,WANG Jinghai,DENG Guoping. Application of 3D Laser Scanning Technology in the Surveying and Mapping Goaf [J]. Gold Science and Technology, 2013, 21(3): 64-68.
[6] WANG Liqun,SUN Li,ZHAO Zhiqiang,LI Yuan,ZHANG Jingtao. Research and Application of  Step-by-step Approach Caving Mining Method [J]. Gold Science and Technology, 2012, 20(6): 76-78.
[7] YANG Yong,QIU Yingkui,YANG Jie,HE Guoqiang,LIU Junxiao. Study on Optimization of Blasting Technology in Jiaojia Gold Mine,Shandong Province [J]. Gold Science and Technology, 2012, 20(6): 79-81.
[8] ZHANG Xiaofei, SUN Aiqun,NIU Shuyin, ZHANG Fuxiang,LIU Cheng,WU Yupu. Analysis on the Mineralization Construction and Ore-controlling Role  of Jiaojia Gold Ore Field in Jiaodong Area [J]. J4, 2012, 20(3): 18-22.
[9] QIU Fusheng. Application of Normally Closed-type Anti-running Car Device of Inclined Shaft in Jiaojia Gold Mine [J]. J4, 2012, 20(2): 86-88.
[10] DONG Jinkui,SHEN Yan,QIU Jungang. Investigation of Joint Fissure and Analysis of Ore-rock Stability in Sizhuang Mining of Jiaojia Gold Deposit [J]. J4, 2012, 20(2): 58-61.
[11] GUO Jianmin,WANG Zhuo,WANG Yanwei,LENG Hansong. Practice on the Dust Transformation of Filling Station in Jiaojia Gold Mine, Shandong Province [J]. J4, 2011, 19(5): 62-64.
[12] LANG Yaping,ZHANG Zhibin,JIANG Haogang. The Application of Construction Auditing in Metal Mine [J]. J4, 2011, 19(5): 69-71.
[13] ZHANG Guangfeng,LI Tao. Study on the ITIL-based Management Mode of Integrated Information Operation and Maintenance [J]. J4, 2011, 19(5): 76-78.
[14] YANG Jiguang. Application of Underhand Drift Bottom Cementing Back -filling Method in Jiaojia Gold Mine [J]. J4, 2011, 19(5): 33-36.
[15] CAO Xueyong,YANG Yong,ZHAO Jie,LI Weining. Research on the Mining Method Optimization of Ⅲ Vein Orebody in Jiaojia Gold Mine, Shandong Province [J]. J4, 2011, 19(4): 59-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Enjing,GUO Guangjun,ZHAO Rongxin,WANG Yanwei,YU Xiaojie,LV Guangyao,WANG W. Research and Application of the Mineralization Network Structure in Sizhuang Gold Deposit,Shandong Province[J]. J4, 2012, 20(4): 76 -80 .
[2] SUN Yang,LUO Liming,DENG Hongwei. Stability Analysis and Parameter Optimization of Stope in Deep Metal Mines[J]. Gold Science and Technology, 2017, 25(1): 99 -105 .
[3] YANG Longwei, YANG Xingke, GAO Yaning, HE Hujun, CHU Nana, ZHANG Zhengmin. Three-dimensional Model and Location Prediction of Changgou Gold Deposit in Northern Hanyin of South Qinling Mountains[J]. Gold Science and Technology, 2018, 26(3): 270 -278 .
[4] . [J]. J4, 1990, 0(5): 20 .
[5] Fengli XIAO,Qingdong ZENG,Fengshan MA,Zhaokun WANG,Zhifu SUN,Zongfeng SUN. Features of Major Gold Metallogenic Fracture Belt in Northwestern Jiaodong[J]. Gold Science and Technology, 2018, 26(4): 396 -405 .
[6] Peng JIN,Kewei LIU,Xudong LI,Jiacai YANG. Numerical Simulation Study of Crack Propagation in Deep Rock Mass Under Water-coupling Blasting[J]. Gold Science and Technology, 2021, 29(1): 108 -119 .
[7] Chao YANG,Lijie GUO,Jie WANG,Caixing SHI,Wenyuan XU. Study and Application of Large Fill-times-line Pressure Filling Technology in a Gold Mine[J]. Gold Science and Technology, 2019, 27(1): 89 -96 .
[8] Yuhua XIE,Hua GAO,Zhe ZHANG,Liang YANG,Xinxing KE,Xiaomin LIU,Jianbiao LUO,Qi LIU,Kunlin XU,Jishun LIU,Zhilin WANG,Hua KONG,Biao LIU. Ore-forming Fluid Characteristics and Material Source of Gold Deposits in Tongdao County,Hunan Province:Evidence from Fluid Inclusions and H-O-S Isotopes[J]. Gold Science and Technology, 2021, 29(1): 74 -89 .
[9] ZHANG Aimin,YANG Hongchang,FAN Chunchao,XU Houzhen,CHEN Shenghu,LI Haiji. Application of Combined Support Technology of U-steel Stents and Wooden Shelter in the Jiaojia Gold Mine[J]. Gold Science and Technology, 2013, 21(1): 53 -57 .
[10] LIU Guodong,WEN Guijun,LIU Caijie,BAO Zhongyi,SUN Zhongquan,FAN Jiameng,LI Shan,YAN Chunming,GUO Zhifeng. Discovery,Characteristics and Prospecting Direction of Shuiwangzhuang Deep Super-large Gold Deposit in the Northern Section of Zhaoping Fault[J]. Gold Science and Technology, 2017, 25(3): 38 -45 .